SYST/OR 568 Applied Predictive Analytics

Spring 2016

George Mason University
Department of Systems Engineering and Operations Research

Instructor: Jie Xu

Office: Engineering Building, Room 2218 Phone: (703)993-4620; Fax (703)993-1521

Email: jxu13@gmu.edu

Class hour: Thursday 7:20-10:00 PM, Planet 127

Office Hours: Thursday 3-5pm
TA: Bahman Pedrood
TA email: bpedrood@gmu.edu
TA office hours: Tue & Fri 6-7pm

TA office: ENGR 2216

Course Description: Introduces predictive analytics with applications in engineering, business, finance, health care, and social economic areas. Topics include time series and cross-sectional data processing, data visualization, correlation, linear and multiple regressions, classification and clustering, time series decomposition, factor models and causal models, predictive modeling performance analysis, and case study. Provides a foundation of basic theory and methodology with applied examples to analyze large engineering, social, and econometric data for predictive decision making. Hands-on experiments with *R* will be emphasized.

Prerequisites: Graduate standing (Undergraduate engineering math: Calculus, probability theory, statistics, and some basic computer programming skills.)

Textbooks:

Required:

Max Kuhn and Kjell Johnson, "Applied Predictive Modeling," Springer, 2013.

Recommended References:

- 1. W. N. Venables, D. M. Smith, and the R Core Team, "An Introduction to R," http://cran.r-project.org/doc/manuals/R-intro.pdf, CRAN, 2014.
- 1. Rob Hyndman and George Athanasopoulos, "Forecasting: Principles and Practice," OTexts, 2013.
- 2. Dean Abbott, "Applied Predictive Analytics: Principles and Techniques for the Professional Data Analyst," Wiley, 2014.
- 3. Thomas Miller, "Modeling Techniques in Predictive Analytics: Business Problems and Solutions with R," Pearson FT Press, 2013.
- 4. Chris Brooks, "*Introductory Econometrics for Finance*," 3rd edition, Cambridge, 2014.

- 5. Ruey Tsay, "Introduction to Analysis of Financial Data with R," Wiley, 2013.
- 6. Rene Carmona, "Statistical Analysis of Financial Data in R," Springler, 2014.
- 7. Jeffrey M. Wooldridge, "Introductory Econometrics: A Modern Approach," South-Western College Pub, 2012.

Optional Readings:

- 1. Foster Provost and Tom Fawcett, "Data Science for Business," O'Reilly, 2013.
- 2. Eric Siegel, "Predictive Analytics," Wiley, 2013.

Assignments and Exams:

There will be five hand-in assignments during the semester, a mini term project, as well as a mid-term exam and a final exam, both in-class. The exams will not be open book. However, you will be permitted a two-sided "cheat sheet" with notes and/or formulae.

Grading:

The assignments, mini project, mid-term, and final exams constitute 25%, 20%, 25% and 30% of the grades respectively.

Schedule:

Unit #1:	Introduction; review of predictive modeling, inferential statistics, and R lal
Unit #2:	Predictive modeling and data pre-processing
Unit #3:	Exploratory data analysis; visualization, transformation and kernel density
Unit #4:	Descriptive modeling: univariate and multivariate statistical models
Unit #5:	Regression models: linear prediction in business analytics, finance and econometrics
Unit #6:	Nonlinear regression models and its applications in predictive analytics
Unit #7:	Mid-term exam
Unit #8:	Linear classification models and discriminant analysis
Unit #9:	Nonlinear classification model, clustering, and classification tree
Unit #10:	Multivariate time series models
Unit #11:	Factor models and principal components
Unit #12:	Bayesian inference and causal models
Unit #13:	Performance analysis and case study
Unit #14:	Course review
Unit #15:	Term project presentation
Unit #16:	Final exam