SYST 320: Dynamic Systems II

Course Overview, Fall 2015

It is often important to predict the behavior of systems that change in time. Such systems are called *dynamic systems*. Examples include mechanical systems (for example, the suspension system of a car), electrical systems (an audio amplifier), fluid systems (an estuary and the rivers that flow into it), biological systems (populations of interacting species), and so forth.

The objective of this course is to model and analyze a variety of systems using a common mathematical framework of linear differential equations. This course follows SYST 220, Dynamic Systems I. The first course covered mechanical systems and fundamental aspects of obtaining solutions using Laplace transforms and block diagrams. This course expands the set of application areas to include electrical systems, fluid systems, and other applications; and it continues the analysis of how systems respond to different external inputs and controls. Key questions addressed in this course are:

- Is a system stable?
- What are fundamental characteristics of the system behavior as a function of time?
- How does the system respond to oscillatory inputs?
- How can external controls be applied to ensure adequate system performance in the presence of uncertain disturbances?
- How should the system be designed to meet specified engineering requirements?

Class Hours: Tuesday, Thursday, 10:30 – 11:45 am.

Location: Lecture Hall 2

Pre-requisites: SYST 220 (dynamic systems I)

MATH 203 (matrix algebra) MATH 214 (differential equations) PHYS 260 (university physics II)

Instructor: John Shortle
E-mail: jshortle@gmu.edu
Phone: 703-993-3571

Room: Nguyen Engineering Building, room 2210 Office hours: Tue. Noon – 1pm, Wed. 2:45 – 3:45

Teaching Asst.: TBD

E-mail: Room: Office hours:

Textbook: Palm, W. J. 2014. System Dynamics. McGraw-Hill, 3rd edition.

Student Evaluation Criteria

Homework and quizzes	15%
Professionalism	3%
Group project	10%
Midterm 1	20%
Midterm 2	20%
Final exam	32%

Syllabus and Course Schedule Last Updated: 8/17/15

Date	Topic	Reading	Assignment
Tue. Sep. 1	Fluid Systems, cons. of mass, capacitance	7.1, 7.2	
Thu. Sep. 3	Fluid Systems, resistance	7.3	Hmwk #1 due
Tue. Sep. 8	Fluid Systems, dynamic models	7.4	
Thu. Sep. 10	Electrical Systems, circuit elements	6.1	Hmwk #2 due
Tue. Sep. 15	Electrical Systems, solving circuits	6.2	
Thu. Sep. 17	Electrical Systems, impedance	6.3	Hmwk #3 due
Tue. Sep. 22	Electrical Systems, resistive heating		
Thu. Sep. 24	Electrical Systems, filters		Hmwk #4 due
Tue. Sep. 29	Midterm #1		
Thu. Oct. 1	Time Domain Analysis, 1 st order systems	8.1	
Tue. Oct. 6	Time Domain Analysis, 2 nd order systems	8.2	
Thu. Oct. 8	Time Domain Analysis, roots, stability	8.2	Hmwk #5 due
Tue. Oct. 12	No Class (Columbus Day on Monday)		
Thu. Oct. 14	Time Domain Analysis, step response	8.3	Hmwk #6 due
Tue. Oct. 20	Time Domain Analysis, parameter estimation	8.4	
Thu. Oct. 22	Dynamic systems in the SEOR curriculum		Hmwk #7 due
Tue. Oct. 27	Freq. Domain Analysis, complex #'s		
Thu. Oct. 29	Freq. Domain Analysis, Bode plot	9.1	Hmwk #8 due
Tue. Nov. 3	Midterm #2		
Thu. Nov. 5	Freq. Domain Analysis, resonance	9.2	
Tue. Nov. 10	Freq. Domain Analysis, further examples	9.3	
Thu. Nov. 12	Freq. Domain Analysis		Hmwk #9 due
Tue. Nov. 17	Intro. to Control Systems	10.1, 10.2	
Thu. Nov. 19	Intro. to Control Systems	10.3	Hmwk #10 due
Tue. Nov. 24	Intro. to Control Systems	10.4	
Thu. Nov. 26	No Class (Thanksgiving)		
Tue. Dec. 1	Other Applications		
Thu. Dec. 3	Other Applications		Project due
Tue. Dec. 8	Other Applications		
Thu. Dec. 10	Review		Hmwk #11 due
Tue. Dec. 15	Final Exam, 10:30 am – 1:15 am , Chap. 6-10		