
Max – Min Problems

• These types of problems have become common 
recently in military and security circles

• General characteristics
• Two opposed sides
• One side is attempting to use a system
• The other side is trying to thwart use of that system
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• The other side is trying to thwart use of that system
• System user has to commit to a course of action, then 

opposition reacts
• Each side has limited resources
• Each side knows the other’s capabilities

• This is a Stackelberg (leader-follower) game
• Literature refers to these as attacker-defender models



Example: Roadblock Delay Model

• Consider the modified shortest path model below:
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• What situation is being modeled? What are the Dij’s?
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Problems (and the Solution)

• We don’t know how to maximize one set of variables 
while minimizing another

• The objective function is nonlinear
• What to do?

• Note that if we fixed the y’s, we’d have a typical shortest path 
formulation
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formulation
• So, let’s do that, and write the dual of the problem:
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Now We Have Something We Can Solve

• The dual problem is linear in the y’s
• The dual problem is also a maximization
• So, we can solve a single optimization:

subject to

max uuz sd −=
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Application: Changi Naval Base, Singapore

Intelligence service gets word of a 
possible terrorist attack against a 
ship in port at Changi Where should the 

checkpoints be set?
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Ship needs 2 
hours to get 
away to safe 
distance

From “How to Attack a Linear Program,” Jerry Brown,  Matt Carlyle, Terry Harrison, Javier 
Salmeron, and Kevin Wood, Naval Postgraduate School , copyright 2003



When Does This Trick Work?

• You need the following structure in your model:
• Variables associated with both sides only appear in the objective 

function
• These variables appear in a multiplicative form
• One side can be modeled using continuous variables (so you can 

form its dual)
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• Methodology is available to iterate between 
optimizations
• Necessary when both sides require integral variables
• Mechanics of passing solutions between optimizations (and 

avoiding cycling) can be complicated

• You can also exploit network structure …



Project Delay Model

• One side has a project, another wants to delay it
• Try augmenting the easy (dual) CPM formulation:
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• No go: mixes u’s and y’s in the constraints
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Try the Primal Form of CPM …

• I’m maximizing both sides, but the objective is nonlinear
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• Am I stuck?
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The Trick

• Create additional arcs, which the attacker controls
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What do these 
constraints do?



Can We Allow the Other Side to Crash Jobs?

• Change the (one-sided)  project crashing model a bit 
to minimize total project time, with a constraint on 
added resources
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• We need to form the dual of this model

( )
( )

( )iiii

i

i
ii

ijiiij

qiMINCcr

iu

vCTcrCC

xjiARCSjicrCuu

 allfor  0

 allfor  edunrestrict 

),(, allfor  

−≤≤

≤⋅

∈−≥−

∑

CCi: resource 
per unit time to 
expedite task i

CT: total 
resources 
available



Dual of Project Crashing Model
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Now, Use the Same Trick …
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Morals …

• We can solve a very important set of two-sided models 
using elementary LP theory

• A wide range of such models can be solved as a 
single optimization

• You have to be able to form the dual of one of the 
sides to do this
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sides to do this
• You have to know which constraints in this dual 
correspond to the variables of that side (why?)



Review of Forming Duals

• Let’s do a simple version of the project crashing 
problem

• Assume we can crash the jobs s, 1, and 2
• Let’s write down the problem in standard form …

s d

2

1
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• Let’s write down the problem in standard form …
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Write the Problem in Tableau Form

• This is an exercise you can do in a spreadsheet
• Remember that each row will become a variable in the 
dual, and each column will become a constraint

Z U(s) U(1) U(2) U(d) cr(s) cr(1) cr(2)
dual vars 1 -1 0 0 1 0 0 0

x(s,1) 0 -1 1 0 0 1 0 0 >= C(s)
x(s,2) 0 -1 0 1 0 1 0 0 >= C(s)
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x(s,2) 0 -1 0 1 0 1 0 0 >= C(s)
x(1,d) 0 0 -1 0 1 0 1 0 >= C(1)
x(2,d) 0 0 0 -1 1 0 0 1 >= C(2)
q(s) 0 0 0 0 0 -1 0 0 >= MIN(s) - C(s)
q(1) 0 0 0 0 0 0 -1 0 >= MIN(1) - C(1)
q(2) 0 0 0 0 0 0 0 -1 >= MIN(2) - C(2)

v 0 0 0 0 0 -CC(s) -CC(1) -CC(2) >= -CT



Write the Transpose to Form the Dual

• Again, you can cut and paste the transpose of the 
matrix in the spreadsheet

Z x(s,1) x(s,2) x(1,d) x(2,d) q(s) q(1) q(2) v
dual vars 1  C(s) C(s) C(1) C(2) MIN(s) - C(s) MIN(1) - C(1) MIN(2) - C(2) -CT

U(s) 0 -1 -1 0 0 0 0 0 0 = -1
U(1) 0 1 0 -1 0 0 0 0 0 = 0
U(2) 0 0 1 0 -1 0 0 0 0 = 0
U(d) 0 0 0 1 1 0 0 0 0 = 1
cr(s) 0 1 1 0 0 -1 0 0 -CC(s) <= 0
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• Does this match the dual formulation?
• If not, what doesn’t match?

cr(s) 0 1 1 0 0 -1 0 0 -CC(s) <= 0
cr(1) 0 0 0 1 0 0 -1 0 -CC(1) <= 0
cr(2) 0 0 0 0 1 0 0 -1 -CC(2) <= 0



Making the Formulation Match

• The network flow constraints are all equalities
• If you multiply them each by –1, you get the dual 
formulation back

Z x(s,1) x(s,2) x(1,d) x(2,d) q(s) q(1) q(2) v
dual vars 1  C(s) C(s) C(1) C(2) MIN(s) - C(s) MIN(1) - C(1) MIN(2) - C(2) -CT

U(s) 0 1 1 0 0 0 0 0 0 = 1
U(1) 0 -1 0 1 0 0 0 0 0 = 0
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• This preserves the network convention that flow out is 
positive

U(1) 0 -1 0 1 0 0 0 0 0 = 0
U(2) 0 0 -1 0 1 0 0 0 0 = 0
U(d) 0 0 0 -1 -1 0 0 0 0 = -1
cr(s) 0 1 1 0 0 -1 0 0 -CC(s) <= 0
cr(1) 0 0 0 1 0 0 -1 0 -CC(1) <= 0
cr(2) 0 0 0 0 1 0 0 -1 -CC(2) <= 0



Another Useful Model - Network Interdiction

• Two players:
• The network user wants to maximize flow through a 

capacitated network
• The network interdictor wants to reduce flow by interdicting 

arcs in the same network

• The interdictor can interdict a limited number of arcs
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• Rules of the game
• Both players know the network and the arc capacities
• The interdictor chooses which arcs to interdict
• All interdictions are completely successful
• The user observes the interdictions and then maximizes flow 

on the remaining network



The Model (sparing the derivation)
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Example: Winston p. 472, #2 

NY

DENCHI

LA

300 (300)

400 (400)
500 (500)

OPTIMAL 
FLOWS IN 

RED
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MEP DAL

Dummy arc: 
set capacity 
at large # 
(like 10000)

400 (250)

150 (150)

250 (200)200 (100)

350 (350)



Solution with New Model, 1 Arc Interdicted

NY

DENCHI

LA

300 (0)

THIS ARC IS 
INTERDICTED

500 (200)

OPTIMAL 
FLOWS IN 

RED
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MEP DAL

400 (150)

150 (150)

250 (200)200 (0)
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Other Notes About This Model

• Interpreting the solution
• The y’s that are 1 give the arcs that are interdicted
• The objective function gives the resulting max flow
• The b’s that are 1 give the min-cut arcs in the remaining 

(uninterdicted) network

• Some interesting extensions
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• Some interesting extensions
• Suppose interdicting each arc has a an interdiction cost; then, 

you could let the interdiction be subject to a budget constraint
• To make an arc “uninterdictable” just bound the corresponding 

y variable to be equal to 0



A General Attacker – Defender Model

• Suppose y represents the defender, and x the attacker
• The attacker can take away certain of the defender’s 
resources, but he is limited by his own resources

• The resulting model (in matrix-vector notation) is:

c: defender’s cost vector
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A: consumption parameters for 
unattackable resources

b: available unattackable 
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F: consumption parameters for 
attackable resources

U: available attackable resources 
= diag( u)

C: attacker’s 
consumption 
parameters

d: attacker’s 
available resources



Switching Problem to “Cost Attack”

• As before, we can’t handle x’s and y’s in the 
constraints

• Instead, we penalize y’s use of resources that x
attacks by attaching penalties in the objective

minmax += PFyxcyz T
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taken away by attacker



Converting to a Single Optimization

• As before, take the dual of the inner problem to form a 
single maximization:
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Parting Notes

• If you build a model like this:
• You have to choose which side will be represented by the dual
• You must be careful about choosing penalties; should be as small 

as possible, otherwise results may be unreasonable

• This is growth area in optimization modeling
• Some useful articles:

• Brown, Carlyle, Salmeron, and Wood, “Defending Critical 
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• Brown, Carlyle, Salmeron, and Wood, “Defending Critical 
Infrastructure”

• Brown, G., Carlyle, M., Diehl, D., Kline, J. and Wood, K., 2005, “ A 
Two-Sided Optimization for Theater Ballistic Missile Defense,” 
Operations Research,53, pp. 263-275

• Available at http://www.nps.navy.mil/orfacpag/resumePages/papers/
browngpa.htm



Integer Programming

• Time to drop the divisibility assumption of LP
• Most obvious reason

• Many resources or decisions restricted to integral values
• Rounding an LP answer often infeasible or suboptimal

• Less obvious (but maybe more important) reason
• Integer variables can implement logical conditions (if-then, one 
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• Integer variables can implement logical conditions (if-then, one 
of many, etc.)

• Allows the model to make complex decisions 

• Another reason
• Integer variables can be used to approximate nonlinear 

functions
• Often employed for things like quantity discounts



These Capabilities Come at a Price

• Integer programming much more difficult
• We’re searching a “lattice” of points, not a continuous space
• Many problems contain a combinatorially explosive number of 

possible solutions

• Example: “NOSWOT” problem from MIPLIB
• 128 total variables - 75 binary {0,1}, 25 integer
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• 128 total variables - 75 binary {0,1}, 25 integer
• CPLEX 6.0: did not solve after running for several days
• CPLEX 6.5: solved in 6.2 hours, but required solving 

26,521,191 LP’s in a branch-and-cut tree

• And what became of NOSWOT?
• CPLEX guys declared war, examined core problem
• Added 8 additional constraints; problem now solves in 16 

seconds



Morals of Integer Programming

• It is very, very difficult to beat an experienced human 
scheduler

• If you have an existing heuristic way to get a solution, 
you should start with that

• Problems that look innocuous can be very tough or 
impossible
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impossible
• Add any constraints or exploit any problem structure 
you can

• Read both Woolsey articles!



Restricting Variables to Integral Values

• For variables restricted to integral values, just declare 
them as “integer”

• We’ll deal with how this works later
• If your problem has no logical conditions, rounding 
often works
• Such problems are said to have a feasible “interior”
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• Such problems are said to have a feasible “interior”
• Early IP literature filled with rounding schemes
• Some still used on enormous problems



Using Binary Variables for Logical 
Conditions

• Suppose y1, y2, and y3 are binary {0,1} variables
• Let 1 represent true (or “on”), 0 be false (or “off”)
• The following table gives a logical expression and the 
appropriate constraint:

• y3 = y1 and y2
13

≤
≤

yy

yy
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• y3 = y1 and y2

• y3 = y1 or y2

• if y1, then y2

1213

23

−+≥
≤

yyy

yy

213

23

13

yyy

yy

yy

+≤
≥
≥

21 yy ≤



Fixed Charge Formulations

• Typical situation: have to pay a fixed cost before 
producing or consuming something
• Example: have to build a factory before making a car
• If cars made = 0, you don’t need the factory
• If cars made > 0, you need the factory (but just one!)

• How to do this:
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• How to do this:
• Assume x is the variable that depends on some fixed condition
• Let y be a binary {0,1} variable, with 0 = off, 1 = on
• Let U be the upper bound on x
• The following constraint forces x to 0 unless y is 1 (on)

xUy ≥



Either-Or Conditions

• Used in situations where one of two constraints apply, 
depending on a decision variable

• Example: saving for your kid’s future
• y = 0 send kid to vocational school, at cost Uv

• y = 1 send kid to Harvard, at cost Uh

• xv = amount saved for vocational school

OR 541 Fall 2009
Lesson 9-3, p. 7

• xv = amount saved for vocational school
• xh = amount saved for Harvard
• The following enforces this condition:

( )
hh
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xyU

xyU

≤
≤−1



Generalizing the Either-Or Conditions

• We may have situations where we want to choose 
among constraints
• Example: y = 1 means overthrow despot of oil rich country; y = 

0 means don’t overthrow him
• Constraints on military expenditures and oil availability may or 

may not apply, depending on the value of y

OR 541 Fall 2009
Lesson 9-3, p. 8

• Choosing among two constraints:
• y = 1 “turns off” constraint 1
• y = 0 “turns off” constraint 2
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Choosing K out of N Constraints

• You can extend this to the “K out of N” case:
• Define y1 … yN as binary variables
• The following ensures that only N-K constraints will hold:
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1
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OR 541 Fall 2009
Lesson 9-3, p. 9

{ } iy

Ky

yMbxabxa

i

i
i

NNN
i

i
N
iN

i
i

N
i

ii

 allfor  1,0∈

≤

≤−⇒≤

∑

∑∑

M



Functions or Variables with N Possible Values

• Sometimes a function or variable can only take on a 
set of values
• Example: raw materials available only in certain lot sizes
• Only certain combinations of waist size and sleeve length 

available

• Let D1 … DN be the values the function can take on; 
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• Let D1 … DN be the values the function can take on; 
then:
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If-Then Conditions

• If the first condition applies, then so must the second
• Example from Winston:

• This is logically equivalent to an either-or condition:

0)(0)( ≥⇒> xgxf

 BOTHOR  0)( OR 0)( ≥≤ xgxf
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• So, if Gl is a lower bound on g(x) , Fu is an upper 
bound on f(x) , and y is binary, the following constraints 
implement the condition:
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