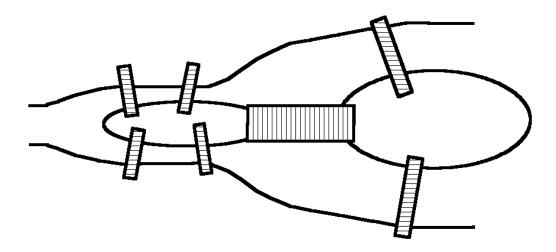
Networks

- People have been thinking about network problems for a long time
- Koenigsberg Bridge problem (Euler, 1736)



The Konigsberg Bridge Problem

Can you cross all 7 bridges exactly once on a walk?

Types of Network Flow Problems (Winston)

- Transportation problem (Hitchcock, 1941)
 - Given a set of sources, destinations
 - Have source capacities, destination demands
 - Know shipping cost/unit for each source-destination pair
 - Minimize total cost of meeting demands at destinations
- Assignment Problem
 - Restricted transportation problem
 - Each source can supply 1 object
 - Each destination demands 1 object
- Transshipment Problem
 - Transportation problem with intermediate (transshipment) points
 - Generalizes both transportation and assignment problem

Other Network Models in Winston

- Shortest path problem (Dijkstra1959)
 - Find the shortest route between an origin and a destination
 - Algorithms range simple "greedy" algorithm to very complex
 - Special case of the transshipment problem
- Maximum flow problem
 - Maximize flows from a single source to a single destination
 - Important dual result: finds the minimum "cut" in a network
- Minimum spanning tree
 - Objective is to connect all nodes in a network
 - Want to minimize the total length of the connections
- Project management (PERT-CPM)
 - Find time to complete a linked set of tasks
 - Is actually a "longest path" problem

Some Network Models Not in Winston

Circulation problem

- Transshipment problem with no source or demand nodes
- Example: airline routing schedules
- Generalized flow problem
 - Some of the material flowing on the network is lost in transmission
 - Example: electrical power transmission, water distribution
- Multicommodity flow problem
 - More than one type of material is flowing on the network
 - Different materials consume network capacity, but may have different transmission costs
- Network interdiction problem
 - Bad guys are moving on a network; good guys try to stop them
 - Each side has to choose what paths to use or interdict

Network Models Not in Winston (cont'd)

- Network reliability problem
 - Find the maximum reliability set of routes in network
 - In certain cases, can be recast as an MCNFP
- Network models with "side constraints"
 - Knapsack problem: optimize the "goodness" of a set of objects that must fit into a finite-sized "knapsack"
 - Traveling Salesman Problem: find the minimum-cost tour among a set of destinations, but only visit each destination once
 - Various vehicle routing problems
- Network optimization literature is gigantic
 - Seminal text is Ahuja, Magnanti, and Orlin (1993); 846 pages!
 - Huge number of applications
 - Inspiration for much of the research into algorithmic efficiency
 OR 541 Fall 2009
 Lesson 8-1, p. 5

Concentration in This Course

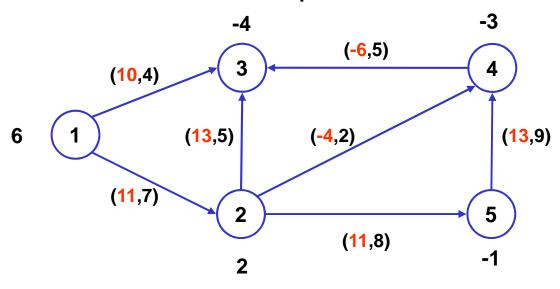
- I will emphasize the transshipment problem
- Otherwise known as the minimum-cost network flow problem (MCNFP)
- Reasons:
 - Transportation, assignment, max flow, shortest path problems are all cases of MCNFP
 - All commercial software implements a modified simplex method based on MCNFP
 - To exploit this capability, you have to formulate in terms of MCNFP
 - Specialized transportation and assignment problem algorithms are largely unnecessary (e.g., stepping-stone and Hungarian methods)

Network Jargon

- To model a problem as a network, we need some terminology
- A graph G consists of:
 - A set of nodes (N)
 - A set of arcs (A), which connect the nodes
 - So, G = (N,A) specifies the "topology" of the network
- Graph characteristics
 - Let *i,j* be indices for the nodes
 - Then the pair (*i,j*) identifies an arc
 - This notation allows us to define things such as:
 - Unit transportation costs on an arc (C_{ii})
 - Supplies at each source node (S_i)
 - Demands at each demand node (D_i)

From Network to Optimization Model

Consider the transshipment network below:



- What does all this mean?
 - Numbers in circles are node labels
 - Numbers next to nodes are *supplies* (>0) and *demands* (<0)
 - Numbers on arcs are (cost/unit to ship, max flow on arc)
- Assume we want to minimize total cost

Optimization Model (Winston format)

- Let x_{ij} be the flow on arc (i,j)
- Then, the model is:

min
$$z = 11x_{12} + 10x_{13} + 13x_{23} - 4x_{24} + 11x_{25} - 6x_{43} + 13x_{54}$$

subject to
$$x_{12} + x_{13} = 6 \text{ (node 1 balance)}$$

$$-x_{12} + x_{23} + x_{24} + x_{25} = 2 \text{ (node 2 balance)}$$

$$-x_{13} - x_{23} - x_{43} = -4 \text{ (node 3 balance)}$$

$$-x_{24} + x_{43} - x_{54} = -3 \text{ (node 4 balance)}$$

$$-x_{25} + x_{54} = -1 \text{ (node 5 balance)}$$
all $x_{ij} \ge 0$

$$x_{12} \le 7, x_{13} \le 4, x_{23} \le 5, x_{24} \le 2, x_{25} \le 8, x_{43} \le 5, x_{54} \le 9$$

Some Key Points

FLOW MUST BALANCE!

- For pure supply nodes, flow out must equal supply
- For pure demand nodes, flow in must equal demand
- For transshipment nodes, flow out must equal flow in
- Note the example has nodes that demand and transship
- What do we do if supply is unequal to demand?
 - Create dummy node to absorb (ship) excess supply (demand)
 - Create costs that make sense in the model
- Arc costs can be negative
- Can also force flow on arcs by putting in lower bounds
- Sign conventions
 - Flow out is positive
 - Flow in is negative

Optimization Model (Algebraic format)

- Indices
 - *i, j* = nodes {1,2,3,4,5}
- Subsets
 - ARCS(i,j) = connections between nodes
- Data
 - C_{ij} = cost per unit to ship on arc i,j
 - L_{ij} = lower bound on flow on arc i,j
 - U_{ij} = upper bound on flow on arc i,j
 - **SD**_i = supply or demand at node *i*
- Variables
 - x_{ii} = flow on arc i,j

Algebraic Format (cont'd)

So, the general MCNFP is:

$$\min z = \sum_{i,j \in ARCS(i,j)} C_{ij} * x_{ij}$$

$$\text{subject to} \qquad \text{FLOW}$$

$$\left[\sum_{j \in ARCS(i,j)} X_{ij}\right] - \left[\sum_{j \in ARCS(j,i)} X_{ji}\right] = SD_i \text{ for all nodes } i$$

$$L_{ij} \leq x_{ij} \leq U_{ij} \text{ for all } ARCS(i,j)$$

$$\text{OUT}$$

- One MPL program can represent any MCNFP!
- So, are we done yet?

Answer is NO

- The trick with networks is to translate the problem into a network structure
- Many things that don't appear to be networks are
 - See Winston, pp. 366-368 on the inventory problem
 - Many, many other models can be represented by a network
- So, the challenge is to:
 - Determine if the problem can be represented by a network
 - If so, come up with the nodes, arcs, costs, and capacities
- Why do we want to do this?
 - **Speed:** network codes are much faster than normal LP simplex
 - Integrality: if a problem can be represented by an MCNFP, it will have integral answers (if the supplies, demands and bounds are integer)

Common MCNFP Models - Transportation

- Transportation problem
 - This is an MCNFP with no transshipment nodes
 - Nodes are divided into two disjoint sets, SOURCES and SINKS
- So, the formulation becomes:

$$\begin{aligned} &\min z = \sum_{i,j \in ARCS(i,j)} C_{ij} * x_{ij} \\ &\text{subject to} \\ &\sum_{j \in ARCS(i,j)} x_{ij} = SUPPLY_i \text{ for all nodes } i \in SOURCES \\ &\sum_{j \in ARCS(i,j)} x_{ij} = DEMAND_j \text{ for all nodes } j \in SINKS \\ &0 \leq x_{ij} \leq U_{ij} \text{ for all } ARCS(i,j) \end{aligned}$$

 Winston shows a special algorithm for this, but it's unnecessary

Common MCNFP Models - Assignment

- A very simple model (too simple to be of much use)
 - We are matching demands to supplies
 - Each demand (supply) node demands (supplies) 1 unit
 - Number of supply and demand nodes are equal
- So, this model is:

$$\min z = \sum_{i,j \in ARCS(i,j)} C_{ij} * x_{ij}$$

$$\text{subject to}$$

$$\sum_{j \in ARCS(i,j)} x_{ij} = 1 \text{ for all nodes } i \in SOURCES$$

$$\sum_{j \in ARCS(i,j)} x_{ij} = 1 \text{ for all nodes } j \in SINKS$$

$$i \in ARCS(i,j)$$

$$x_{ij} \in \{0,1\} \text{ for all } ARCS(i,j)$$

 Again, Winston shows a special (Hungarian) algorithm for this - it's not needed

Common MCNFP Problems - Max Flow

- This is useful, but is a twist on the MCNFP formulation
 - We are maximizing flow from a single source (s) to a single destination (d)
 - This flow, however, is a variable, v
- This model is:

$$\begin{aligned} &\max \ z = v \\ &\text{subject to} \\ &\left[\sum_{j \in ARCS(i,j)} x_{ij}\right] - \left[\sum_{j \in ARCS(j,i)} x_{ji}\right] = \begin{cases} v & \text{for } i = s \\ 0 & \text{for all nodes } i \neq s, i \neq d \\ -v & \text{for } i = d \end{cases} \\ &0 \leq x_{ij} \leq U_{ij} & \text{for all } ARCS(i,j) \end{aligned}$$

 Note here that the variable v represents a "return arc" from d to s

Shortest (Longest) Path Problem

- This can also be represented by an MCNFP
 - Costs are arc lengths
 - Flow 1 unit from the origin s to the destination d
 - Minimize (maximize) the sum of the arcs used
- Formulation:

$$\min \left(\text{or max} \right) z = \sum_{i,j \in ARCS(i,j)} C_{ij} * x_{ij}$$

$$\text{subject to}$$

$$\left[\sum_{j \in ARCS(i,j)} X_{ij} \right] - \left[\sum_{j \in ARCS(j,i)} X_{ji} \right] = \begin{cases} 1, i = s \\ 0, i \neq s \text{ and } i \neq d \\ -1, i = d \end{cases}$$

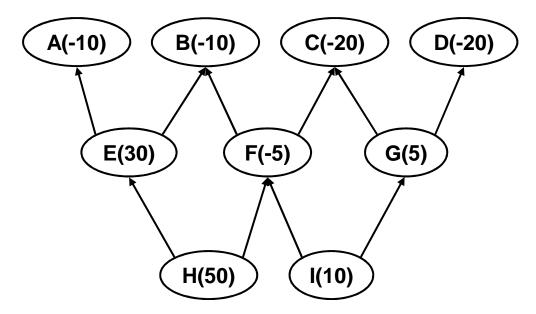
$$0 \le x_{ij} \le 1 \text{ for all } ARCS(i,j)$$

 NOTE: lots of simple algorithms (e.g., Dijkstra) available for this problem

Converting a Problem to a Network

- Many hard problems become easy if you can convert them to a network
- Example: open-pit mining problem
 - An open pit mine can be represented as a set of blocks
 - Each block *i* has a net profit w_i if you choose to extract it
 - But, you have to remove the blocks above it to get to it
- This problem is called a "maximum weight closure"
 - The graph is a set of nodes with weights
 - The arcs show dependencies among nodes
 - A closure is a set of nodes with no outgoing arcs
 - The objective is to find the closure with maximum weight

Example Closure Problem



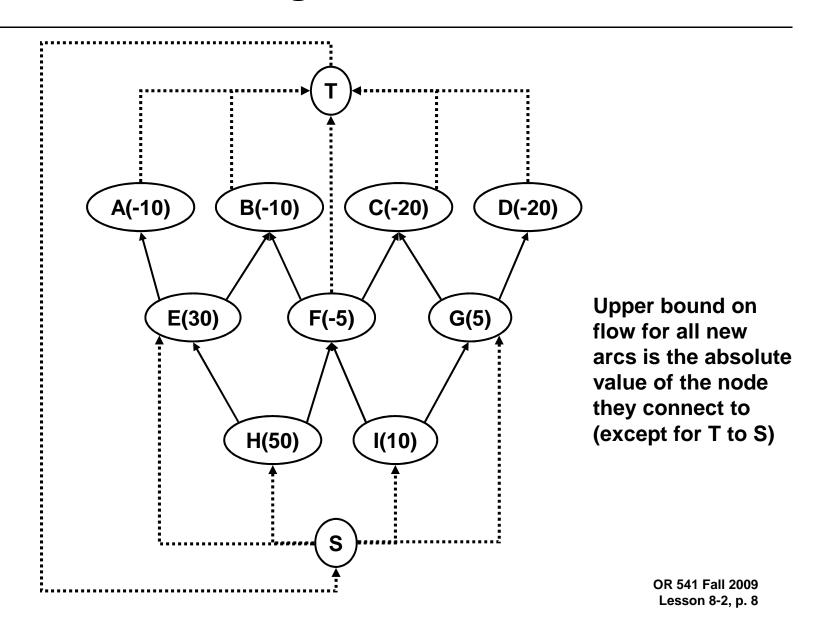
Number in parentheses is payoff for choosing that node

Example: A, B, and E is a closure, with total weight = 10

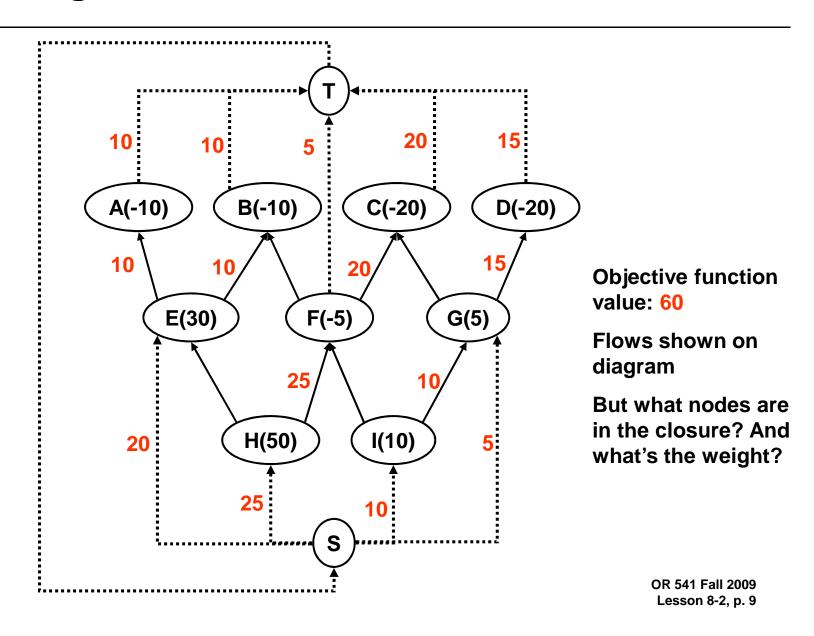
Converting a Closure to a Max Flow Problem

- Add two new nodes, s and t
- Connect all nodes with positive payoffs with arcs from node s
- Connect all nodes with negative payoffs arcs to node t
- Make the upper bound on all new arcs the absolute value of the weight of the node
- Make the upper bound on the original arcs infinite
- Solve a maximum flow problem with this network

The Maximum Weight Closure as a Max Flow



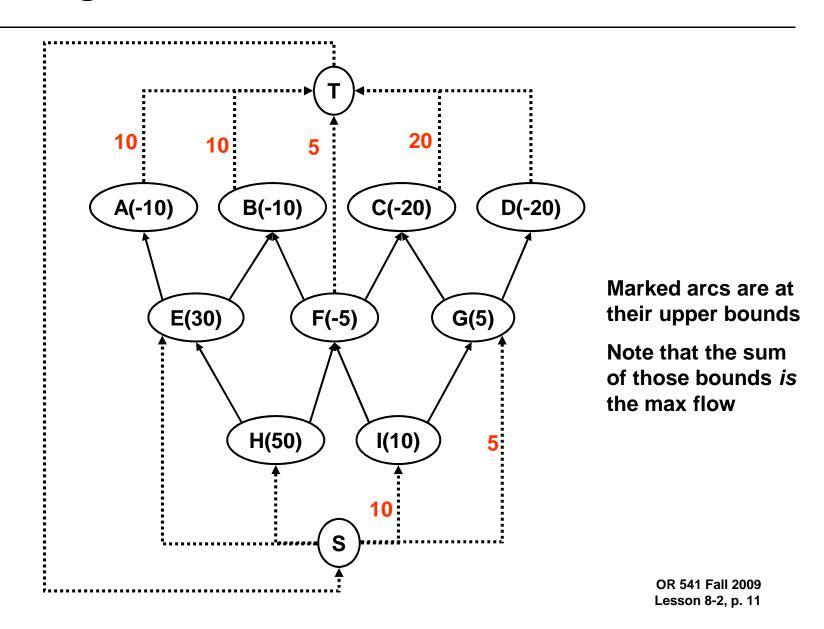
Getting the Answer



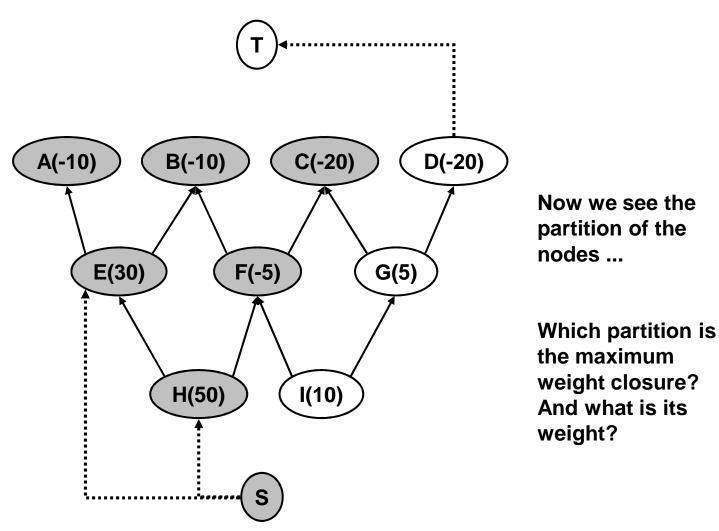
Aside: the Max-Flow Min-Cut Theorem

- In a maximum flow problem, the optimal flow is equal to the capacity of the minimum "cut"
 - A cut is a set of arcs that divides the network into two sets of nodes, one containing the source (S) and the other the sink (T)
 - Call these sets of nodes N_1 and N_2
 - Each arc in the cut set has one endpoint in N_1 and another in N_2
- Consequences:
 - Solving the max flow problem also gives the minimal set of arcs that can "disconnect" the network
 - The arcs in the cut will all be at their upper bounds
 - A large network can have many cutsets
 - May have to resort to a separate algorithm to find them all

Finding the Min Cut in the Closure Problem



Delete the Arcs in the Min Cut



OR 541 Fall 2009 Lesson 8-2, p. 12

Some Final Notes

We can solve the max weight closure problem directly:

$$\max z = \sum_{i} W_{i} x_{i}$$
subject to
$$x_{i} \leq x_{j} \text{ for all } i, j \in ARCS(i, j)$$

$$x_{i} \in \{0,1\} \text{ for all } i$$

- People convert it to a network because:
 - There are special max flow algorithms available that do not require expensive LP solvers
 - It's relatively easy to code these algorithms and they run quickly
- However, you must do added work to find the solution
- See http://128.32.125.151/riot/index.html (the Remote Interactive Optimization Testbed) website for a demo

The Critical Path Method (CPM)

- Recent evolution of project scheduling
 - Methodology depended on who was in charge
 - After WW I, the Gantt (bar) chart became a popular method
 - But, bar charts had limited ability to depict complex relationships
- DuPont and Remington Rand Univac developed a new method in the late 1950's
 - Approach was to depict the project as a network
 - Aim was provide a means to investigate tradeoffs in project cost and duration
 - Came to be known as CPM

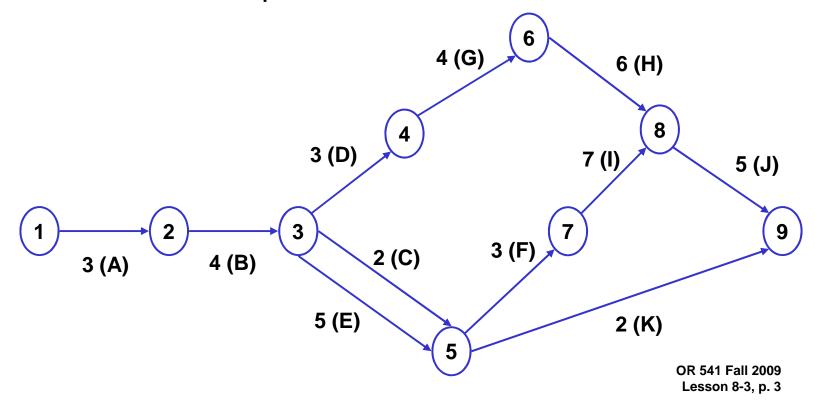
CPM Formulation

- CPM is essentially a longest-path problem (and can be depicted as an MCNFP)
- Consider the following example (from Schrage):

Activity	Job#	Time	Predecessors
Dig basement	А	3	none
Pour foundation	В	4	А
Pour basement floor	С	2	В
Install floor joists	D	3	В
Install Walls	Е	5	В
Install rafters	F	3	C,E
Install flooring	G	4	D
Rough interior	Н	6	G
Install roof	I	7	F
Finish interior	J	5	I,H
Landscape	K	2	C,E

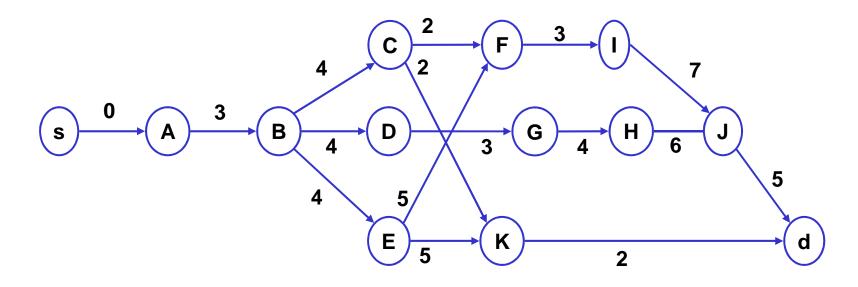
Network Representation (Activity-on-Arc, or AOA)

- Nodes represent precedences
- Arcs represent activities and completion times
- Project time is the *longest* path from 1 to 9
- What's the critical path?



A Better Representation: Activity on Node (AON)

Here is the same problem with the nodes as activities



- This representation is far superior to AOA
 - AOA frequently requires dummy arcs to depict precedences
 - Minimizing the number of dummy arcs is a difficult problem
 - We will not use AOA representations in this course

CPM as a Longest Path Problem

Just maximize the shortest path formulation:

$$\max z = \sum_{i,j \in ARCS(i,j)} C_{ij} * x_{ij}$$
subject to
$$\left[\sum_{j \in ARCS(i,j)} x_{ij}\right] - \left[\sum_{j \in ARCS(j,i)} x_{ji}\right] = \begin{cases} 1, i = s \\ 0, i \neq s \text{ and } i \neq d \\ -1, i = d \end{cases} \begin{pmatrix} u_s \\ u_i \end{pmatrix}$$

$$0 \le x_{ij} \le 1 \text{ for all } ARCS(i,j)$$

- However, we will work (for now) with the dual of this problem
 - The indicies *i*, *j* (with start *s* and finish *d*) now represent jobs
 - The variable u_i is the start time for each job
 - Let C_i be the completion time of job i

Dual Formulation

Here's what the dual looks like:

```
min z = u_d - u_s

subject to
u_j - u_i \ge C_i \text{ for all } i, j \in ARCS(i, j)
u_i \text{ unrestricted for all } i
```

- The dual is not a network!
 - The total time is the difference between u_d and u_s
 - The rest of the constraints enforce precedences, completion times
 - The dual is easier to formulate (and extend) than the MCNFP
- This formulation *does* let us get at what the original researchers wanted to investigate, though ...

Project Crashing

- Addresses trades between expenditures, completion time
- Assume that:
 - You know the cost per unit time to "crash" a job (CC_i)
 - You know the minimum job completion time (MIN_i)
 - **TOT** is the total desired project time
- Formulation, where *cr_i* is the amount a job is crashed:

$$\begin{aligned} &\min z = \sum_{i} CC_{i} * cr_{i} \\ &\text{subject to} \\ &u_{d} - u_{s} \leq TOT \\ &u_{j} \geq u_{i} + C_{i} - cr_{i} \text{ for all } i, j \in ARCS(i, j) \\ &u_{i} \text{ unrestricted for all } i \\ &0 \leq cr_{i} \leq C_{i} - MIN_{i} \end{aligned}$$

Just-In-Time Scheduling

- In this model, some jobs must start within a certain amount of time of other jobs
- Let S_{ij} be the max length of time between the start of job i and the start of job j
- How do we modify the formulation to handle this?

```
\begin{aligned} &\min z = u_d - u_s \\ &\text{subject to} \\ &u_j - u_i \geq C_i \text{ for all } i, j \in ARCS(i, j) \\ &u_j \leq u_i + S_{ij} \text{ for all } i, j \text{ with } S_{ij} \geq 0 \\ &u_i \text{ unrestricted for all } i \end{aligned}
```

Another Twist

- Suppose instead we penalize the time difference between the completion of job *i* and the start of job *j*
- Let:
 - **P**_{ii} be the late penalty per unit time
 - **TOT** be the total desired project time
- The following formulation minimizes these penalties:

$$\min z = \sum_{i,j \in ARCS(i,j)} (u_j - u_i - C_i) * P_{ij}$$
subject to
$$u_d - u_s \le TOT$$

$$u_j - u_i \ge C_i \text{ for all } i, j \in ARCS(i,j)$$

$$u_i \text{ unrestricted for all } i$$

How Do You Find the Critical Path?

- Suppose you solve the example problem in MPL
- You get task start times, but don't know which ones are critical
- The key is to look at the dual values of the constraints, which represent the arcs
- Any arc with a nonzero dual value is on the critical path

i	:	Slack	Shadow
I	j	Slack	Price
S	Α	0	1
Α	В	0	1
В	С	-3	0
В	D	-2	0
В	Е	0	1
С	F	0	0
С	K	-13	0
D	G	0	0
Е	F	0	1
Е	K	-13	0
F	I	0	1
G	Н	0	0
Н	J	0	0
ı	J	0	1
J	d	0	1
K	d	0	0

MPL Code

```
TITLE
  CPM; { Schrage CPM example; MPL must be }
        { in case sensitive mode! }
INDEX
  node := (s,A,B,C,D,E,F,G,H,I,J,K,d);
        := node;
        := node;
DATA
  { prec is used to define precedence arcs }
  prec[i,j] :=
  [s,A,1,
  A,B,1,
   B,C,1, B,D,1, B,E,1,
  C,F,1, C,K,1,
   D,G,1,
   E,F,1, E,K,1,
   F,I,1
  G,H,1,
   H,J,1,
  I,J,1,
  J,d,1,
   K,d,1];
```

```
{ note 0 (dummy) duration times for s and d }
  dur[i] := (0,3,4,2,3,5,3,4,6,7,5,2,0);
VARIABLES
  u[node];
MODEL
  min span = u["d"] - u["s"];
SUBJECT TO
  precedence[i,j] where prec[i,j]>0:
   u[node:=j] - u[node:=i] > dur[i];
END
```