What is Operations Research?

- Morse and Kimball, 1946:
 - "Operations research has come to describe the scientific, quantitative study of the operations of war"
 - "Operations research ... is the application of the scientific technique to the study of combinations of men and equipment in warfare"
 - "Operations research is a scientific method of providing executive departments with a quantitative basis for decisions regarding operations under their control"
- The latter is the accepted definition today
- Common threads
 - Use of the scientific method
 - People in combination with equipment
 - Decision to be made

A WW II Example - Submarine Contact Data

• Original data:

_	Distance from Shore			
	0-60	60-120	120-180	180-240
Contacts	21	11	5	2

- Result: panic
- The story, after some analysis:

_	Distance from Shore			
	0-60 60-12		120-180	180-240
Contacts	21	11	5	2
Flying Hours	15000	3700	600	170
Contacts/Hour	0.001	0.003	0.008	0.012

-

- -

The Scientific Method

- The classic scientific method (from Dr. Jose Wudka, a physicist from UC Riverside)
 - 1. Observe some aspect of the universe
 - 2. Invent a tentative description, called a hypothesis, that is consistent with what you have observed
 - 3. Use the hypothesis to make predictions
 - 4. Test those predictions by experiments or further observations and modify the hypothesis in the light of your results
 - 5. Repeat steps 3 and 4 until there are no discrepancies between theory and experiment and/or observation
- Intent is to eliminate bias, be repeatable and reproducible

OR Methodology (according to Winston)

- Winston (sec 1.1) translates this into a methodology:
 - Step 1: formulate (he should say *define*) the problem
 - Step 2: observe the system
 - Step 3: formulate a mathematical model of the problem
 - Step 4: verify the model and use it for prediction
 - Step 5: select a suitable alternative
 - Step 6: present the results and conclusions of the study to the organization
 - Step 7: implement and evaluate recommendations

This is idealistic (and unrealistic) when people are involved

My Typical OR Project Experience

- Receive tasking from intermediary
- Fight for audience with decision maker
 - Receive loose description of symptoms
 - Struggle over approval of problem definition (several iterations)
- Search for true expertise and useful informationFerret out false experts and useless or misleading data

 - Build initial model, which always fails
 - If not fired, build and test new model
 - Garner support for emerging results
 - Fight for acceptance from decision makers
 - Work through implementation
 - Do many model rebuilds

Don't Be Fooled - OR is Powerful

- 2005 Edelman prize winners for OR practice:
 - Supplier Negotiation Process at Motorola
 - Routing Optimization for Waste Management
 - Supply Chain Improvements for Phillips Electronics
 - Aircraft Ownership Operations for Bombadier Flexjet
 - Decision Support System for Hong Kong International Terminals
 - Asset and Order Management for John Deere
 - US/Russia Plutonium Disposition Option Analysis
- All big problems, huge organizations, lots at stake
- OR methods allowed a *scientific basis* for decisions

Resources for OR

- INFORMS Institute for Management Sciences (www.informs.org)
 - Lead professional society for OR in the U.S.
 - Publishes many journals; offers spectacular student rates
 - Washington, D.C. chapter (http://winforms.chapter.informs.org)
- MORS Military Operations Society
 - Requires security clearance
 - INFORMS Military Application Section does not, however
- Journals
 - Recommend Interfaces, OR/MS Today for those starting out
 - Recommend *Military Operations Research* for those doing defense work
 - Many other journals, with differing degrees of difficulty

Learning About the People Part of OR

- Recommended texts:
 - The Mythical Man-Month (Brooks)
 - Up the Organization (Townsend)
 - The Masks of War (Builder for those associated with DoD)
- INFORMS online is a great resource
 - http://pubsonline.informs.org/
 - Lots of content free to INFORMS members
 - Otherwise, you can only see the abstracts (but that's helpful)
- Also, see Doug Samuelson's ORacle column in OR/MS Today

My Background

- 1980-2003: Active duty, USAF
- Presently: Senior Analyst, MITRE Corporation
- Degrees
 - BS, USAF Academy
 - MS, Rensselaer Polytechnic Institute
 - Ph.D., Naval Postgraduate School
- Career OR analyst (logistics, airlift, campaign modeling, special ops, weapons requirements, DoD strategy)
- Former board member, Military Operations Research Society
- Publications in various journals; referee for *Interfaces*, *MOR*, *Naval Research Logistics*
- Considerable experience in optimization, with several implemented large-scale models

Course Admin

- Home page: http://
- Office hours: best time is after class
- Prefer to handle questions via email
 - "Only when one writes do the gaps appear and the inconsistencies protrude" Frederick Brooks
 - Use OR541GMU@aol.com to send email to me
- Other details on course syllabus
 - Grading
 - Exam dates
 - Fundamental Rules
 - Philosophy

Course Structure

- Concentrates on *deterministic optimization* models
 - Deterministic no random variables
 - Optimization finding the "best" solution among alternatives
- Some common deterministic models not covered
 - Dynamic programming
 - Game theory
 - Scheduling
 - Inventory control
- Will follow Winston, chapters 3-4, 6-10, 11

Optimization, Programming

Optimization

- In general, trying to choose the best solution among competing alternatives
- Addresses a common dilemma; competing interests chasing limited resources
- Requires definition of:
 - "fitness" of a particular solution
 - knowledge of how the alternatives consume resources
 - availability of resources
- Why is it called programming?
 - The original motivation: find a way to scientifically construct the Air Force *program* (multi-year budget) in the late 40's
 - Has nothing to do with computer programming

History (mostly Dantzig, Orchard-Hays)

- 1947-49: Dantzig formulates general linear programming (LP) theory
- 1951: Karush-Kuhn-Tucker conditions begin nonlinear programming
- 1952: commercial applications appear in oil industry
- 1954: first commercial-grade LP code written by William Orchard-Hays
- 1954-56: network flow theory began with Ford-Fulkerson
- 1955: first stochastic programming theory published
- 1958: Gomory develops first integer programming methods
- 1960-62: large-scale optimization begins with Dantzig-Wolfe, Gilmore-Gomory, and Benders' decomposition methods
- 1966: IBM introduces MPS/360, a complete LP package
- 1972: first theory on computational complexity
- 1978: Khachian publishes polynomial-time LP algorithm
- 1984: Karmarkar publishes *working* polynomial-time LP algorithm
- Late 1980's: commercial algebraic modeling languages arrive
- Today: can solve gigantic problems on a \$3000 PC

So, What is A Linear Program?

- Start with a typical linear algebra problem, **Ax = b**
 - A is a m (row) X n (column) matrix, b an m-vector (called the right-hand side), x is a vector of variables
 - As simple as:

$$a_{11}x_1 + a_{12}x_{12} = b_1$$
$$a_{21}x_1 + a_{22}x_{12} = b_2$$

- From linear algebra, if **m=n**, then this system has:
 - 1 solution, if? (A is invertible)
 - No solution if? (A is singular and inconsistent)
 - Infinite solutions if? (A is singular and consistent)

What If n > m?

- We have more variables than equations
- Can form $\binom{n}{m}$ square matrices from A; many nonsingular
- How do we distinguish the alternatives?
- Answer: form an objective function
 - Notion unknown prior to Dantzig's work
 - Provided way to score solutions
- Dantzig proposed a linear objective
 - Define an **n**-vector, **c**
 - For any solution **x** of **Ax=b**, the "score" of the solution is **cx**, e.g.

$$c_1 x_1 + c_2 x_2$$

What If the Problem Has Inequalities?

• If **b** represents available resources, we may not require that we use them all, e.g.

$$a_{11}x_1 + a_{12}x_{12} \le b_1$$
$$a_{21}x_1 + a_{22}x_{12} \le b_2$$

- Now what? The linear algebra book doesn't cover this!
- Solution: add *slack* variables to turn them into equalities

$$a_{11}x_1 + a_{12}x_{12} + s_1 = b_1$$

$$a_{21}x_1 + a_{22}x_{12} + s_2 = b_2$$

$$s_1, s_2 \ge 0$$

Note restriction!

OR 541 Fall 2009 Lesson 1-2, p. 6

The Model and Its Assumptions

• General model in "standard" form:

```
\max z = cx<br/>subject to Ax \le b<br/>x \ge 0
```

Note that z is a convenience

Note that x can bounded above and below; we'll deal with it later

- Assumptions
 - **Proportionality:** contribution to objective and consumption of resources are proportional to value of **x**
 - Additivity: contribution, consumption of \boldsymbol{x}_i independent of value of \boldsymbol{x}_k
 - Divisibility: x can take on continuous values within its bounds
 - Certainty: A,b, or c are not random
- Is this too restrictive to be useful?

Optimization Taxonomy - By Assumptions

	Proportionality	Additivity	Divisibility	Certainty
Linear Programming	X	X	X	X
Integer Programming	X	X		X
Nonlinear Programming				X
Stochastic Programming (common forms)	X	X	X	

Aside: Some Recommended Sources

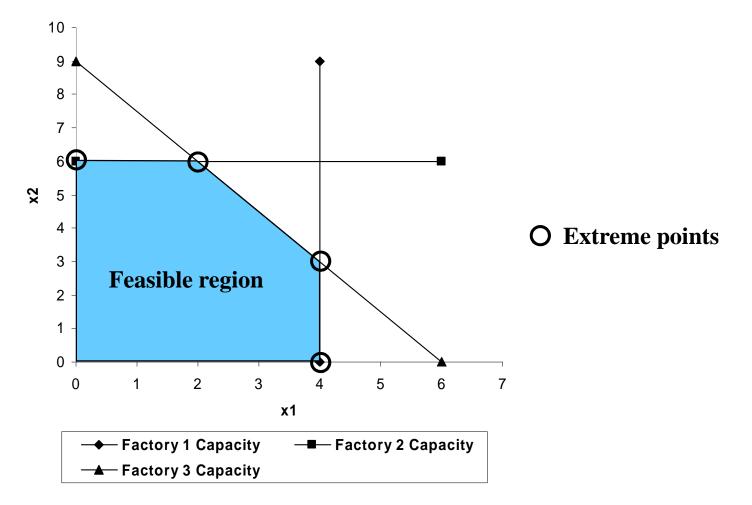
- Overall optimization modeling
 - Schrage, Optimization Modeling with LINDO
 - H. P. Williams, Model Building in Mathematical Programming
- Linear, Integer Programming
 - Rardin, Optimization
 - Vanderbei, Linear Programming Foundations and Extensions
 - A very good set of course notes from Dr. John Chinneck: http://www.sce.carleton.ca/faculty/chinneck/po.html
- Networks
 - Ahuja, Magnanti, Orlin, Network Flows
- Nonlinear Optimization
 - Bazarra, Sherali, Shetty, Nonlinear Programming Theory and Algorithms

Graphical Solution of LP's

- Note: this is a teaching aid, not a serious technique
 - Limited to 2 (or maybe 3) variables
 - Idea is to use graphs to reinforce concepts
 - Will blast through this rapidly
- Infamous Hillier and Lieberman Wyndor Glass problem
 - In their OR book since 1967
 - Has survived unchanged through 5 subsequent editions
 - Will presumably be taught to your grandchildren as well

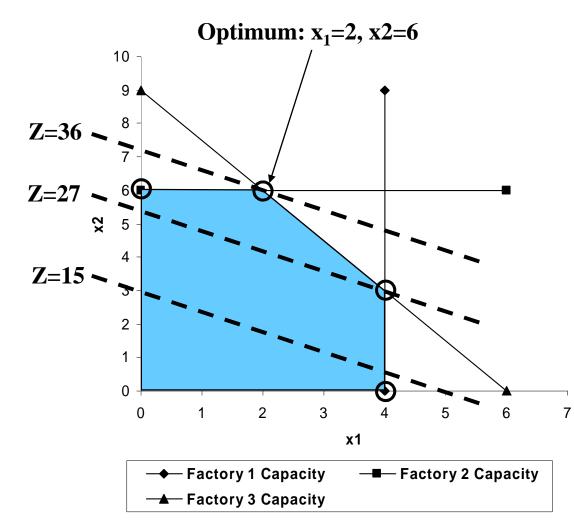
Wyndor Glass Info

- Company has 3 plants
 - Plant 1: aluminum frames and hardware (4 units capacity avail)
 - Plant 2: wood frames (12 units capacity avail)
 - Plant 3: glass, overall assembly (18 units capacity avail)
- They can make 2 new products (and sell all production)
 - 1: 8-ft glass door, aluminum framing (\$3 profit/unit)
 - 2: 4x6 double-hung wood window (\$5 profit/unit)
- Capacity required per unit by product at each plant


	Plant			
Product	1	2	3	
1	1	0	3	
2	0	2	2	

Problem Formulation

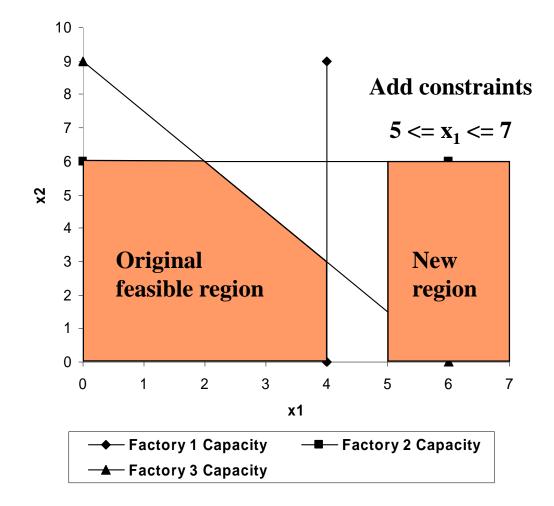
- In words:
 - Maximize total profit
 - By choice of production amounts for the two new products
 - Subject to constraints on manufacturing capacity
- The Math:
 - define x_i as production of product *i*; then the problem is:


 $\begin{array}{ll} \max & Z = 3x_1 + 5x_2 \\ \text{subject to :} \\ x_1 \leq 4 \text{ (plant 1 capacity)} \\ 2x_2 \leq 12 \text{ (plant 2 capacity)} \\ 3x_1 + 2x_2 \leq 18 \text{ (plant 3 capacity)} \\ x_1, x_2 \geq 0 \text{ (no negative production)} \end{array}$

Graphing the Constraints; Terminology

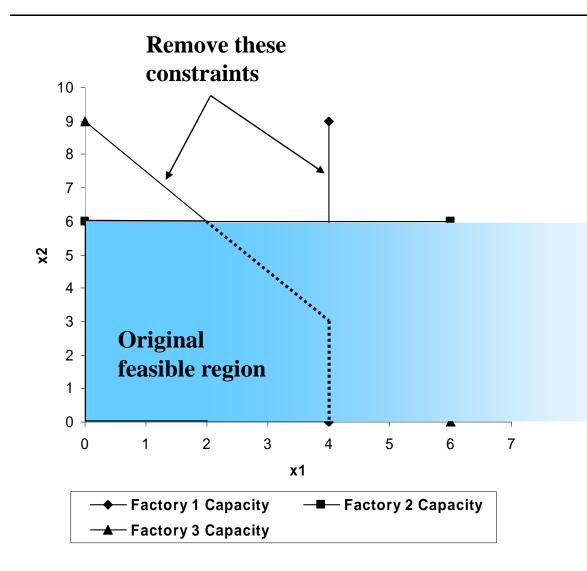
OR 541 Fall 2009 Lesson 1-3, p. 4

Objective Function Contours

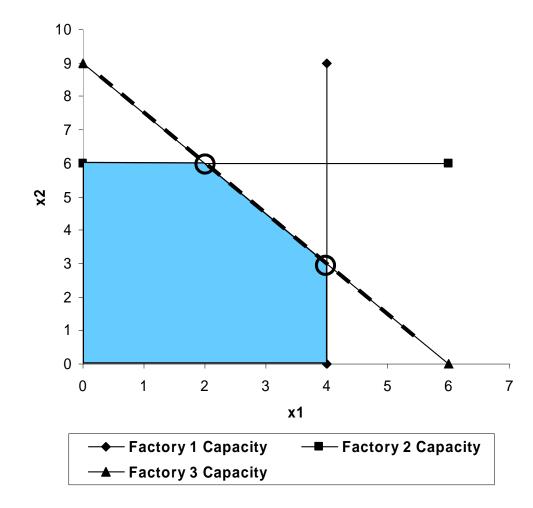

Method:

1. Set $Z = 3x_1 + 5x_2$ to some value

- 2. Plot contour
- 3. Find parallel contour that intersects feasible region and maximizes Z (greatest orthogonal distance from the point (0,0)


Some Questions

- What if the answer wasn't integral? (IP part of the course)
- Is the feasible region always a convex set?
 - Euclidean space Eⁿ: set of all n-dimensional vectors of real #'s
 - Convex set S in Euclidean space Eⁿ: any line segment joining two points in the set is also in the set, i.e., if x₁ and x₂ are in S, then ax₁+(1-a)x₂ is also in S, for 0<= a <= 1
 - Each constraint forms a *half-space*; intersection of a finite set of half-spaces is a *polyhedron*, which is a convex set
- Does the optimum always occur at an extreme point?
 - Extreme point of convex set S: a point which cannot be written as a strict convex combination of any 2 points in S, i.e.,
 x <> ax₁+(1-a)x₂, for any x₁, x₂, and 0<a<1
 - Suppose a point **x** isn't an extreme point, but is optimum. What happens?


- No point satisfies constraints; problem's DOA
- NOTE: discovering which constraints are irreconcilable can be *very* difficult in large problems

Special Case #2 - Unbounded Solution

- Variable x1 unconstrained; objective can increase without bound
- Normally sign of a screwup; nothing's unbounded in reality
- When modeling, you should put simple bounds on *all* variables

Special Case #3: Infinite Number of Solutions

- Common in large LPs
- Objective function is parallel to a binding constraint
- Note that the optimum still occurs at extreme points (but also on the line segment connecting them)
- Generally leads to more analysis to try to break ties

OR 541 Fall 2009 Lesson 1-3, p. 9

One More Special Case ...

- Frequently, a variable will appear in the solution with a value of 0 (or be at its upper or lower bound)
- This is a condition known as *degeneracy*
- Hard to show in two dimensions; we'll cover it later