SYST 660/OR 750 AIR TRANSPORTATION SYSTEMS ENGINEERING SPRING 2007 (3:0:3)

Research I, Room 405

Instructor: Prof. Sherry Office: Rm. 409, Research I Office Hours: Tue 4pm – 6pm

COURSE OBJECTIVE:

The student will be introduced to a wide range of current issues in air transportation. The issues include: industry economics, system capacity, current system modeling capability, human factors considerations, safety analysis, technology innovation and public policy. The student is expected to develop a broad understanding of the contemporary and future issues through simulation and analysis of the NAS and it's stakeholders. The course will be conducted as a seminar course and will emphasize development of student's critical reading skills. The student's knowledge will be evaluated through class discussions, class presentations, homework and exams.

PRE (CO) REQUISITES: graduate standing, experience in air traffic control, transportation, or permission of instructor

TEXT BOOKS: (Required)

Air Transportation Systems Engineering, Donohue and Zellweger (Editors), Progress in Astronautics and Aeronautics Volume 193, American Institute of Aeronautics and Astronautics, 2001.

TEXT BOOKS (Optional)

(*Optional*) *The Airline Handbook – The Online Version*, Air Transport Association, http://members.airlines.org/about/d.aspx?nid=7946

(Optional) Profit Strategies for Air Transportation, George Radnoti, Aviation Week Books

(*Optional*) *Fundamentals of Air Traffic Control*, 3rd Edition, Michael Nolan, International Thomson Publishing, 2001

(Optional) Commercial Aviation Safety, Alexander Wells, McGraw Hill

(*Optional*) *Straight and Level: Practical Airline Economics*, Stephen Holloway, Ashgate

Week	Торіс	Materials	Lead	Notes
1 Jan 23	Introduction – Air Transportation	Handout	Sherry	
2 Jan 30	• Air Traffic Management	Donohue	Student A	
	Capacity-Driven Operational	Chap 2		
	Concept Through 2015			
	Airport Capacity Assessment	Donohue		
		Chap 5	Student B	
3 Feb 6	Forecasting & Economic	Donohue	Student C	
	Analysis for Aviation System Engineering	Chap 6		
	• Economic Benefits of Increased	Bennet,	Student D	
	Enroute Sector Capacity from Controller Pilot Data-Link	Knorr, Rakas		
4 Feb 13	Equitable Allocation of	Hoffman &	Student E	
	Limited Resources	Davison		
5 Feb 20	• Existing & Required Modeling	Odoni et. al.	Student F	
	Capabilities for Evaluating			
	ATM Systems and Concepts			
6 Feb 27	Airport Queueing Model	Handout	Wang, L.	
7 Mar 6	• Price Policies for Air Traffic	Donohue	Student G	
	Assignment	Chap 9 Donohue	Student H	
	• Assessing the Benefits of CDM	Chap 10	Student H	
	in Air Traffic Management	Chap 10		
8 Mar 14	Spring Break			
9 Mar 20	Mid-Term Exam			
10 Mar 27	Approaches to Incorporating	Ageeva	Student I	
	Robustness into Airline			
	Scheduling			
11 Apr 3	Modeling an Airline Operations	Donohue	Student J	
	Control Center	Chap 16		
12 Apr 10	Aviation Environment – Noise Model	Noise Model	Thompson	
13 Apr 17	Safety Relevant Operational Cases	Watkins &	Student K	
	in Air Traffic Management	Lygeros		
14 Apr 24	SRO/Wake Vortex Model	Handouts	Shortle	
15 May 1	Review			
16 May 8	Final Exam			

GRADING:

40% mid-term exam40% final exam20% class presentation, homework, and class discussion

Mid-term Exam: Take home, open book exam. 10 - 15 page paper, double spaced.

Focus Topic of Mid-term Exam: Describe the stakeholders in the Air Transportation System (ATS). Identify their objective functions, and the relationship between the objective functions. Describe any dynamics that may exist due to conflicting or non-congruent objective functions.

Final Exam: Take home, open book exam. 10 - 15 page paper, double spaced.

Focus Topics of Final Exam: (1) Describe the stakeholders in the Air Transportation System (ATS). Identify their objective functions, and the relationship between the objective functions. Describe any dynamics that may exist due to conflicting or noncongruent objective functions, (2) Describe how airlines respond to limited capacity in the NAS (e.g. runway slots, metering fix slots, departure slots, etc. by scheduling, flighplan filing, re-routing, and maneuvering tricks, (3) Methodologies for Benefits Analysis, (4) Economic models for air transportation, (5) Aviation environmental issues, (6) Air transportation safety

ACADEMIC HONESTY:

- Honor code strictly enforced
- Suspected violations will be reported