George Mason University Department of Systems Engineering

SYST 500 / CSI 600 Fall 2006 Quantitative Methods for Systems Engineering, Operations Research, and Computational Science

Description:

This course is designed to provide the basic quantitative foundations that students need to pursue a graduate program in Systems Engineering, Operations Research, and Computational Science. Topics include vector and matrices, differential equations, Laplace transforms and probability theory. A brief review of calculus and complex numbers will also be provided. The course will require some computational work using the software *Matlab*, available on the GMU computer systems.

Pre-requisites: MATH 203 (Matrix Algebra)

MATH 213 (Analytic Geometry and Calculus III) MATH 214 (Elementary Differential Equations)

Texts:

Dennis G. Zill and Michael R. Cullen, *Advanced Engineering Mathematics (3rd Edition)*, Jones and Bartlett (2005) Hwei Hsu *Probability, Random Variables and Random Processes Schaum Outline Series*, McGraw Hill, 1996

Instructor: Dr. Monica Carley-Spencer mcarley@gmu.edu (703) 983-7045

Grading: Homework = 36%, Midterm Exam = 32%, Final Exam = 32%

Policy: All work is to be done individually. All students must abide by the GMU Honor Code. Homework is due <u>at the beginning of class</u>, one class period from the date assigned, unless otherwise indicated. Late homework will be not be accepted.

Class website: http://mason.gmu.edu/~mcarley/syst500

Class Outline:

Week 1	Tuesday 8/29	vectors and matrices	Z&C: Ch 7	
Week 2	Tuesday 9/5	matrices, linear systems, intro Matlab	Z&C: 8.1-8.2, other	HMWK 1 due
Week 3	Tuesday 9/12	matrices: rank, determinants, inverse	Z&C: Ch 8.3-8.6	HMWK 2 due
Week 4	Tuesday 9/19	eigenvalues/vectors, complex numbers	Z&C: Ch 8.8	HMWK 3 due
Week 5	Tuesday 9/26	review of calculus	Other sources	HMWK 4 due
Week 6	Tuesday 10/3	differential equations	Z&C: Ch 1, 2	HMWK 5 due
Week 7	Tuesday 10/10	*** no class ***		
Week 8	Tuesday 10/17	MID-TERM EXAM	Ch7, Ch8, & Calculus	
Week 9	Tuesday 10/24	higher-order differential equations	Z&C: Ch 3.1, 3.3	HMWK 6 due
Week 10	Tuesday 10/31	higher-order differential equations, systems of differential equations	Z&C: Ch 3.4, 3.11	HMWK 7 due
Week 11	Tuesday 11/7	systems of differential equations	Z&C: Ch 10.1-10.2	HMWK 8 due
Week 12	Tuesday 11/14	Laplace transforms	Z&C: Ch 4	HMWK 9 due
Week 13	Tuesday 11/21	power and geometric series	Z&C: Ch 5.1, other	HMWK 10 due
Week 14	Tuesday 11/28	probability and random variables	Hsu: Ch 1-2	HMWK 11 due
Week 15	Tuesday 12/5	multiple random variables	Hsu: Ch 3	HMWK 12 due
Week 16	Tuesday 12/12	FINAL EXAM (7:30-10:15 PM)	Comprehensive	