OR 645: Stochastic Processes

Fall 2005

Course Overview

Most real-world processes are fundamentally *stochastic* – that is, they have a random component. This course provides an in-depth survey of models that can be used to analyze a wide variety of stochastic processes. The focus is both on quantitative analysis of such models and practical issues using such models to represent real problems. This course assumes some prior knowledge of probability and basic stochastic models (like Markov chains). The pre-requisite is OR 542 (Stochastic Models), or STAT 544 (Applied Probability), or permission of the instructor.

Class Hours: Tuesday, 4:30 pm – 7:10 pm, Robinson B 202 Pre-requisites: OR 542, or STAT 544, or permission of instructor

Instructor: John Shortle

jshortle@gmu.edu 703-993-3571

Science & Tech II, room 313

Office hours: Tue 3:00 pm - 4:30 pm

Textbook: S. Ross, *Introduction to Probability Models*, 8th Ed.

Student Evaluation Criteria

Homework	15%
Midterm	35%
Final exam	50%

Tentative Schedule for Fall 2005

Class	Lecture Topic	Homework
Aug. 30	Review of probability	
	Exponential distribution	
	Poisson process	
Sep. 6	The Poisson process	Hmwk #1 due
Sep. 13	The Poisson process	Hmwk #2 due
Sep. 20	Markov chains (Discrete / Continuous)	
Sep. 27	Markov chain (Discrete / Continuous)	Hmwk #3 due
Oct. 4	Markov chains (Discrete / Continuous)	
Oct. 11	** No Class ** (Columbus Day)	
Oct. 18	Markov chains (Discrete / Continuous)	Hmwk #4 due
Oct. 25	** Midterm **	
Nov. 1	Renewal theory	
Nov. 8	Renewal theory	Hmwk #5 due
Nov. 15	Renewal theory	
Nov. 22	Brownian motion	Hmwk #6 due
Nov. 29	Brownian motion	
Dec. 6	Brownian motion	Hmwk #7 due
Tue. Dec. 13	** Final Exam **, 4:30 pm – 7:15 pm	