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Mission Statement: 
“We military Operations Researchers plan to fight and win our nation’s wars.” 

 
The Department of Defense coordinates the activities of millions of people using assets 
worth trillions of dollars.  This is important, complex work.  Computer-based decision 
support is universal, and this has enabled optimization to continue to enhance legacy 
manual planning methods.  The success of real-world applications of optimization turns 
out to depend on a handful of trade secrets that are essential, but do not appear in 
textbooks.  This short summary reveals ten of these secrets and motivates them by 
example. 
 
 
#1: Document (Think) before you compute. 
 
We have had an astonishing number of opportunities to unwind problems with 
optimization models that are implemented, and behaving badly, but that are not yet 
documented at all. 
 
Documentation must include these three critical components: 
 

• A non-mathematical executive summary, 
• A mathematical formulation, and 
• A verbal description of the formulation. 

 
1.1) A non-mathematical executive summary must answer the following five 
questions, preferably in this order. 
 

1) What is the problem? 
2) Why is this problem important? 
3) How will the problem be solved without your help? 
4) What are you doing to solve this problem? 
5) How will we know when you have succeeded? 

 
Express your executive summary in your executive sponsor’s language, rather than in 
technical jargon.  If you have trouble writing such a summary in less than five pages, this 
is a sure sign that you are not ready to proceed. 
 

• Have a non-analyst read your executive summary to you, out loud, 



• Ask this reader to explain your executive summary to you,  
• Listen well, and 
• Revise and repeat. 

 
1.2) A mathematical formulation should include, in this order. 
 

• Index use (define problem dimensions), 
• Given data (and units), 
• Decision Variables (and units), 
• Objectives (and constraints), and (perhaps) 
• A dual formulation. 

 
Remember to define terms before using them.  To distinguish inputs from outputs, adopt 
a convention such as lowercase for indexes and data, and UPPERCASE for DECISION 
VARIABLES. 
 
1.3 A verbal description of the formulation explains in plain English, and in your 
executive sponsor’s language, what each decision variable, objective, and constraint adds 
to the mathematical model.  Here you have a chance to define what the mathematics 
means as well as why each feature appears in your model.  Avoid literally translating 
mathematics into English.  For instance, avoid saying “the sum of production X over item 
subscripts i must be no more than 50 for each time subscript t,” and instead say “the total 
production of all items must not exceed 50 in any year.”  Do state and justify any 
simplifying assumptions (some examples include “Our planning time fidelity is monthly, 
with a ten-year planning horizon.”  “We allow fractional issue quantities of these large 
volumes.”  “We have assumed demand is constant, and not random.”) 
 
 
#2: Bound all Decisions 
 
Bounds restrict the domain of every decision.  There is no such thing as an unbounded 
variable in our real, OR analyst’s world.  Establishing bounds for each decision variable 
is a trivial concept, too often ignored.  True, any reasonable optimization solver will do 
this for you automatically, but the solver can’t tell you that its analysis is based on bogus 
or missing data in your model.  If you manually apply simple ratio tests (e.g., “If I had all 
the steel GOOGLE says the world produced this year, how many tanks could I build?”) 
and get ridiculous answers (e.g., “2.1 M1A2 tanks,” or “10 billion tanks”), you have 
discovered an error in your data or description of the manner in which tank production 
consumes steel. 
 
Remember all the formal “neighborhood” assumptions underlying your optimization 
method?  Taylor’s Theorem makes any continuous function appear linear, if you bound 
things tightly enough.  All your costs and technology probably exhibit nonlinear effects 
across widely-varying magnitudes, but maybe not over a small enough neighborhood --- 
the domain you are planning for. 
 



Enumeration of models with integer variables can be made much easier if the bounds on 
the integer variables are as tight as possible.  This is worth working on before you start 
trying to solve large models.  If the tightest bounds you can state permit a “large” integer 
domain, relax the integrality requirement and round the continuous result to the nearest 
integer.  The inaccuracy rounding inflicts will be no worse that one over the final value of 
the variable. 
 
Bounding all your decision variables pays an unexpected bonus.  Pull out your favorite 
optimization textbook and look at the basic theorems you may have sweated over in 
class.  Notice how much mathematical lawyering becomes superfluous when you rule out 
the unbounded case.  Voila. 
 
 
#3 Expect any Constraint to Become an Objective, and Vice Versa 
 
Military planning models are notorious for multiple, conflicting objectives. 
 
Get familiar with a “weighted average objective,” and what it really means.  E.g., if you 
maximize “2-times-apples plus 13-times-hand grenades” you have introduced a basic 
assumption (often hidden or overlooked) about the relative worth of apples and hand 
grenades. 
 
Learn about “hierarchical (i.e., lexicographic) objectives,” and how to coerce off-the-
shelf optimization software into following your hierarchy.  For instance, you might 
maximize the highest-priority objective, and then add a constraint on this objective to 
maintain this performance in all subsequent solutions.  Repeat with each lower-priority 
objective until these successive restrictions have addressed your entire hierarchy, or your 
model is so over-constrained that further restriction would be pointless.  With an 
algebraic modeling language, you can automate all of this as a single model excursion. 
 
You can see that there is a continuum (sic) between weighted average objectives and 
hierarchical ones.  Make sure to use your solver, rather than your model, to make this 
asymptotic transition from finite weights to the infinite weights required to make a 
weighted average objective function render lexicographic results.  Floating point 
numerical errors increase in direct proportion to the relative magnitude of the terms in 
your additive weighted-average objective.  You may be able to express such an objective, 
but the computer won’t see what you intend. 
 
Expert guidance from senior officers and executives frequently filters down to modelers 
as constraints (i.e., orders).  In our experience, constraints deriving from literal 
interpretation of such guidance inevitably lead to an infeasible planning model.  Nobody 
likes that. 
 
Discovering what can be done changes your concept of what should be done.  This leads 
you to “aspiration constraints,” where you determine, for instance, just how much of 
something you can maximize in isolation, and then write a constraint saying (“I’ll settle 



for 90 percent of this isolated maximum.”)  Work with your senior sponsors using these 
simple methods, and you can guide them to give you better advice.  (Remember, as OR 
analysts we may think our job is to give advice, but it’s really to help the sponsor make 
the right decision.) 
 
A huge literature advises how to deal with multiple objectives, but the simple ideas here 
usually work best. 
 
 
#4 Classical Program Sensitivity Analysis is Bunk 
 
Blind application of dual values, right-hand side ranging, and other neat textbook tricks 
actually offer very little useful advice on how the solution responds as the inputs all 
change.  Even for those few models that are continuously linear, classical textbook 
sensitivity analysis is rarely useful.  In fact, some of the best off-the-shelf mathematical 
modeling languages and solvers do not support such analysis.  We professors love to 
teach this stuff, and we’ll keep teaching it because it conveys lessons on the foundations 
of our optimization methods, and how to interpret the quantitative (how much to do) and 
qualitative (what to do) influence of restrictions and relaxations. 
 
Just plan on solving a lot of model excursions, and don’t be afraid that these will take 
weeks to complete.  In the past 15 years, improvements in linear program (LP) solvers 
and in particular in integer-linear program (ILP) solvers and their controls have improved 
performance by a factor of at least 10,000 in addition to the much faster speeds of newer 
computers.  Many in our profession still recall overnight batch processing of MPS tapes, 
and this is not a fond memory.  Get over it.  All you need today is a reasonably endowed 
desktop or laptop computer.  For almost any modeling engagement, we can expect to rig 
up an optimization that lets us express a question and get an answer while our sponsor 
still remembers that question. 
 
In our world, it’s more important to seek “scenario- (i.e., warplan-) robust” solutions than 
to worry about individual parameter changes.  Always seek the current defense planning 
guidance as filtered and tended by your sponsor.  These war plans are the currency of our 
military planning realm.  Try to find some way to express your solution(s) to respond 
directly to this guidance and the requirements it has justified. 
 
 
#5 Bound your Dual Variables 
 
A conventional linear program constraint has a dual variable that is unbounded and can 
be interpreted “this is how much it would be worth to relax this constraint by one unit.”  
Please refer to #2, above. 
 
An elastic linear program constraint uses a linear penalty per unit of violation.  Allowing 
this constraint to be violated at some finite penalty cost per unit violation bounds its dual 
variable (i.e., ‘this is the most it is worth to me to satisfy this constraint, otherwise violate 



it, pay this penalty, and I’ll deal with the consequences.”  There is no such thing as an 
infinitely-valuable constraint.  Decision makers get paid to deal with infeasibilities, and 
cannot rule them out in the real world. 
 
When you convince your sponsor to work with you to state each constraint with a well 
thought out penalty for its violation, you have enormously enhanced your control and 
understanding of your decision support model. 
 
Another surprise bonus appears with elastic constraints:  integer linear programming is a 
lot easier to deal with when you know a priori that every candidate integer solution in an 
enumeration is, by definition, admissible (i.e., satisfies the constraints, albeit perhaps 
with some penalties.)  Further, if you set your elastic penalties carefully, you will be 
rewarded with remarkable improvement in linear-integer solution quality and solver 
responsiveness. 
 
 
#6 Pay Attention to the Dual 
 
If you have a linear program, or can relax to one, state its dual.  If you can’t write an 
abstract of what this dual means, if you can’t interpret your dual at all, or if your dual is 
nonsense (e.g., unbounded or infeasible), your primal problem is ridiculous.  OK, that’s 
strong language:  Amend this to read “your primal problem needs more attention before 
you’re ready to use it.” 
 
Consider this example of a simple maximum flow model.  You have a source node, a 
destination node, and a capacitated directed network through which you wish to push the 
maximum flow volume from source to destination.  Write this primal linear program and 
solve it.  Now, recover the dual solution.  Admire these dual values, and note that each 
arc on a minimum cut is distinguished by two incident dual values that differ.  If you want 
to attack this maximum flow network, and can cut these arcs, you have decapitated it.   
 
It’s a short trip from here to resource-constrained network interdiction and the most 
cutting-edge, two-sided, attacker-defender models. 
 
The dual is the keystone for all this. 
 
 
#7 Model Robustly 
 
Make sure your model considers alternate future scenarios,  and renders a robust solution. 
 
In the military, we plan for what is possible, not what is likely, so we seldom employ 
random variables to represent the likelihood of each alternate future.  We do use 
simulation to make quantitative (perhaps random) changes to data elements, but we rarely 
randomly sample qualitative future changes. 
 



There may be many theater war plans, but you normally only get one chance per year to 
ask for what you need to get ready for all of them. 
 
Pay attention to the current defense planning guidance, and try your best to address the 
resulting requirements for your sponsor with your model. 
 
Suppose our guidance is to fight and win one engagement while suppressing another, and 
then turning to fight the other and winning it.  If there are, say, 20 fashionable war plans 
on the shelf for such potential engagements, and we don’t get to choose our favorites, we 
may have to plan for 20*19 permutations of engagement pairs.   
 
Worst-case plans are expensive.  So what?  It’s better to convey truthful insights to your 
sponsor than to delude ourselves with baseless optimism. 
 
From the worst case, we can devolve to, for instance, meeting a maximum subset of 
scenario requirements, or maximizing some gauge of scenario fulfillment, or some-such.  
Whatever turns out to be advisable, do your best to document with exquisite clarity what 
assumptions have been made, and what compromises have been necessary, in contrast to 
the naked, overarching defense planning guidance.  This is key: we all have to try to sing 
from the same sheet of music.  Despite apocryphal tales of the demise of analysts bearing 
bad news, an OR analyst using diplomatic, but unambiguous language and careful 
analysis to deliver bad news is a hero.  Witness that in our OR community, we know who 
these outspoken heroes are, and honor and protect them. 
 
Start with the robust (worst) case, because that’s what we all are duty-bound to worry 
about and defend against. 
 
 
#8 Model Persistence 
 
Optimization has a well-earned reputation for amplifying small changes in inputs to 
breathtaking changes in advice. 
 
Decision support engagements typically require many model excursions, followed by 
analysis, followed by revisions and more model plays.  When we have heavily invested in 
analyzing a legacy scenario, and make some trivial adjustment to attend to some minor 
planning flaw, the last thing we want is a revision that changes everything. 
 
If your model is ignorant of its own prior advice, it is ignorant, and you can expect 
annoying turbulence and disruption when solving any revision of a legacy model.  Any 
prescriptive model that suggests a plan, and, if used again, is ignorant of its own prior 
advice, is free to advise something completely, needlessly different, and lose the faith of 
its sponsor.  This is silly. 
 
Persistence means “continuing steadily in some course of action,” and that is exactly 
what we do with long-term optimization-based decision support engagements.  We have 



to successively meld expert judgment of our sponsors with optimal advice from our 
models. 
 
It is easy to add model features that limit needless revisions.  To do this, you need to state 
a legacy solution as an input, and then add model features to retain attractive features or 
limit needless revisions of this legacy.  These persistent features might include: 
 

• Don’t change this legacy resource consumption by more than 2 percent; 
• Between this legacy solution and any revision, add (or delete, or change) no more 

than 3 of the binary options in this set; 
• Don’t change this unless you also change that; and so forth. 

 
We give our students a handout showing how to state integer linear constraints 
expressing the ubiquitous logical relations required in decision support (for instance, for 
binary options A and B, “A only if B,” “A and B, or neither,” “A or B, but not both,” “A 
or B, or both,” etc.).  We also show them how to state persistent guidance for revisions 
(because --- you knew this was coming --- this stuff rarely appears in textbooks). 
 
 
#9 Spreadsheets (and Even Algebraic Modeling Languages) are Easy, 
Addictive, and Limiting 
 
OK, we need a quick answer, we need database support for model development and 
cataloging solutions, and we need a graphical user interface that supports ad-hoc analysis 
and graphical output.  This means we spend a small fortune developing a purpose-built 
graphical user interface, or just use our off-the-shelf office software suite. 
 
Spreadsheets with embedded optimization solvers are inviting.  After all, even your 
executive sponsors likely know how to bring up, or at least admire a spreadsheet, so you 
gain immediate acceptance by adopting a familiar “look and feel” standard.  And having 
a spreadsheet solution means you can immediately catalog it and display it with all the 
tools you use every day in your integrated office software suite. 
 
But spreadsheets support only 2-dimensional views (and pivot tables) of many-
dimensional models, exhibiting what my colleague Art Geoffrion calls “dimensional 
arthritis:”  You can support a many-dimensional model, but it isn’t easy or natural. 
 
We get many calls from spreadsheet users who wonder why their optimization results 
either take forever (literally), or turn out to be wrong.  We ask “how much did you pay 
for the solver you used?”  You get what you pay for.  Spreadsheet solvers have been used 
many times with good success, but before you commit to one, check the credentials of the 
optimization software provider you will depend on.  How will you get help if you have 
problems?  Be careful, and consider spending a few thousand dollars per seat on a well-
known, off-the-shelf, supported, documented, commercial-quality optimization package. 
 



Modeling languages are crafted to accommodate multi-dimensional models, feature 
interface links to all contemporary database, spreadsheet, and presentation managers, and 
make great prototypes.  But if a prototype works and gains acceptance, the prototypic 
implementation modeling language may not make a good decision support tool.  
Modeling languages isolate monolithic models from off-the-shelf commercial solvers.  
Large-scale, indirect solution methods are not supported well (for instance, column 
generation, or decomposition).  If you’re working on an important problem, why would 
you jettison 40 years of wisdom? 
 
The transition from hasty prototype to production model generator and interface is not 
easy.  But, in our experience the result always justifies the investment.  Model generation 
and solution times can be reduced from hours to just seconds.  This is the real deal.  If 
you have ever wondered why so few published models end up being used in the real 
world, this essential missing step may be key. 
 
 
#10 Heuristics Can Be Hazardous 
 
A heuristic --- whether a simple thumb rule or some well-known local search method --- 
is so easy to explain and implement, we are tempted to use one in lieu of more formal 
methods.  Heuristics may not require optimization software and may offer a first choice 
to assess a “common sense” solution, but heuristics should never be your only choice. 
 
We can also develop bounds on the best solution possible, although this is not as much 
fun to do as building a solution-seeking method.  Without some bound like this, our 
advice is of completely unknown quality.  This quality certification is important: a bound 
on the best possible solution is just as important as the best solution you have. 
 
A mathematical optimization model takes longer than a heuristic to develop, and perhaps 
to solve, but it can provide a bound.  In fact, we develop models of relaxations of very 
hard problems merely to get the bounds they provide. 
 
Lacking a trustworthy assessment of the quality of your advice, you are betting your 
reputation that nobody else is more scrupulous or just plain luckier than you are. 
 
Publishing a bound with your solution is the right thing to do, but there is a risk.  We 
have been told:  “Hey, you’re leaving money on the table.”  Well, maybe we are, and 
maybe not. 
 
The interval of uncertainty is what we call the interval between the value of a solution 
and a bound on the value of the best possible solution.  (There are various sources of 
these, such as integrality gap, decomposition gap, Lagrangean gap, duality gap, etc.)  
When you compare two alternate scenarios, you can be absolutely sure about the winner 
as long as the two intervals of uncertainty are disjoint, no matter how large each of these 
intervals is.  Realizing this, you can work just hard enough to find a distinguishing 
difference, and no harder. 



 
We have also been in a private-sector competition where our heuristic competitors wrote 
the sponsor and said “Brown et. al admit their solutions may not be right.”  Boy, they got 
us there, didn’t they?  But their heuristic, which they boast “gets better solutions the 
longer you run it,” reminds us of the difference between “known unknowns” and 
“unknown unknowns.”  We can work with the former, and get nightmares from the latter.  
A solution with no bound?  No thanks. 
 
We have also been told (sigh, and have read in our literature) “This ILP is NP-hard, so 
we use a heuristic.”  Please.  Even if (ahem) you prove your ILP is NP-hard, this only 
means it’s as hard as a lot of other problems we are already solving.  How much better is 
a heuristic with exponential run time than a bounded ILP enumeration controlled by 
several hundred documented tuning parameters representing many decades of research? 
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