SYST 202: Continuous Dynamic Systems Modeling Spring 2004

Course Overview

John Shortle Systems Engineering and Operations Research George Mason University

In engineering, it is important to predict the behavior of systems that change in time. Such systems are called *dynamical systems*. This course teaches students to model a large class of physical systems and to solve these systems both analytically and numerically. This course is a follow on to SYST 201; here, the focus is on *continuous* time systems. A supplemental one unit course, SYST 203, teaches students to solve dynamical systems numerically using a computer.

Class Hours: Tuesday and Thursday, 10:30 am - 11:45 am, Robinson B 205

Pre-requisites:	SYST 201
Co-requisites:	MATH 203 (matrix algebra)
<u>,</u>	MATH 214 (differential equations)
	PHYS 260 (Physics II)
Instructor:	John Shortle
	jshortle@gmu.edu
	703-993-3571
	Science & Tech II, room 313
	Office hours: Tue / Thu 9:15 am – 10:15 am
Textbook:	C. Close and D. Frederick, <i>Modeling and Analysis of Dynamic Systems</i> , 3rd Ed. John Wiley & Sons, 2002.
	Pre-requisites: Co-requisites: Instructor: Textbook:

Course Syllabus

- 1. Introduction modeling, classification of systems, applications, systems engineering
- 2. Systems Modeling physical elements, interconnection lawas, building models
 - a. Translational Mechanical Systems
 - b. Rotational Mechanical Systems
 - c. Electrical Systems
- 3. Systems Analysis
 - a. Standard Forms state variables, input-output equations, matrix formulation.
 - b. Block diagrams using blocks to solve modeling equations, dynamic systems
 - c. Solutions using Laplace transforms definition, properties, inversion, solving systems.
 - d. Transfer functions -zero-input response, zero-state response, frequency response.
 - e. Feedback modeling

Student Evaluation Criteria

10 homework assignments	15%
Group project	10%
Midterm 1	21%
Midterm 2	21%
Final exam	33%

SYST 202 Schedule for Spring 2003

Tue. Jan. 20	Chap. 1, Chap. 2	
Thu. Jan. 22	Chapter 2	
Tue. Jan. 27	Chapter 2	Hmwk #1 due
Thu. Jan. 29	** No Class **	
Tue. Feb. 3	Chapter 3	Hmwk #2 due
Thu. Feb. 5	Chapter 3 / Career	
Tue. Feb. 10	Chapter 4	Hmwk #3 due
Thu. Feb. 12	Chapter 4	
Tue. Feb. 17	Chapter 5	Hmwk #4 due
Thu. Feb. 19	Chapter 5	
Tue. Feb. 24	Review	Hmwk #5 due
Thu. Feb. 26	Exam 1: Chap. 1-5	
Tue. Mar. 2	Chapter 5	
Thu. Mar. 4	Chapter 6	Hmwk #6 due
Tue. Mar. 9	Spring Break	
Thu. Mar. 11	Spring Break	
Tue. Mar. 16	Chapter 6	
Thu. Mar. 18	Chapter 6	
Tue. Mar. 23	Chapter 7	Hmwk #7 due
Thu. Mar. 25	Chapter 7	
Tue. Mar. 30	Chapter 7	Hmwk #8 due
Thu. Apr. 1	Chapter 8	Group project
		mid-reports due
Tue. Apr. 6	Review	Hmwk #9 due
Thu. Apr. 8	Exam 2: Chap. 6-8	
Tue. Apr. 13	Chapter 8	
Thu. Apr. 15	Chapter 8	Hmwk #10 due
Tue. Apr. 20	Chapter 14	
Thu. Apr. 22	Chapter 14	Group projects due
Tue. Apr. 27	Chapter 15	
Thu. Apr. 29	Review	Hmwk #11 due
Thu. May 6	Final Exam,	
	10:30 am – 1:15 pm	