

SYST 101: Intro to Systems

Lecture 7

Feb. 10, 2004 C. Wells, SEOR Dept.

Spring 2004 Slide 1

Announcements

- INCOSE International society of systems engineers. Publishes the journal System Engineering.
 - Student membership forms available in the SEOR Dept. office.

Announcements 3

- Feb 19, Lecture 10, will be a Laboratory day
 - final design and checkout of Project 1
- Mar 2 will be a review day
- Mar 4 will be the Midterm Exam

Agenda

- Objective for Today
 - Project I Grading Information
 - Pair Wise Comparisons
 - Utility Curves

Homework Discussion

- Completion of Mindstorm demo?
 - Everybody loaded the software?
- Anyone need extra parts?

Grading of Project 1

- Project demonstration on Feb 25, oral reports on Feb 27
 - Robot performance
 - Oral presentation (and questions)
 - Documentation package
 - Peer evaluations (as a homework assignment
- Relative weights are TBD
- 15 minutes for each team

Project 1 Test Schedule

3:00	Team 1	3:30	Team 6
3:06	Team 2	3:36	Team 7
3:12	Team 3	3:42	Team 8
3:18	Team 4	3:48	Team 9
3.24	Team 5		

Project 1 Oral Presentations

3:00	Team 1	3:40	Team 6
3:08	Team 2	3:48	Team 7
3:16	Team 3	3:56	Team 8
3:24	Team 4	4:04	Team 9
3:32	Team 5		

Robot Performance

- Accuracy of each circle diameter 30
 - (full credit if circle within 6 inches of requested size)
- Repeatability of circle
- On schedule 20

Oral Presentation

- Style and level of detail (8 min max)
- Content
 - System engineering approach used
 - Member roles and division of work
 - Design of the robot
 - Architecture
 - Parts count
 - Tests performed on the robot
 - Lessons Learned
 - What to do and not do next time

Documentation Package

- Part of the Lab Notebook
 - Data supporting oral presentation
 - Detailed description of the robot
 - How to build it
 - How to control it
 - Parts count

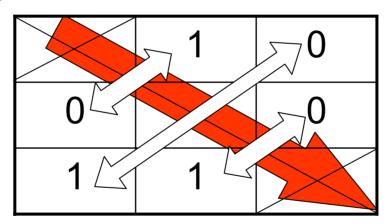
Peer evaluations

- Use form on next slide
- Used to determine the relative contribution of each member to the team's progress.
- For each square, ask
 "did X contribute more to our project than Y?"
- 1=yes, 0=no

Pair Wise Comparison

YOU	Barney	Fred	Wilma	Jane
Barney		B > F?	B > W?	B > J?
Fred	F>B?		F > W?	F > J?
Wilma	W>B?	W>F?		W > J?
Jane	J>B?	J>F?	J>W?	

Filled Evaluation Matrix


YOU	Barney	Fred	Wilma	Jane
Barney		1 (yes)	0 (no)	1
Fred	0		0	1
Wilma	1	1		1
Jane	0	0	0	

Rules for Completing

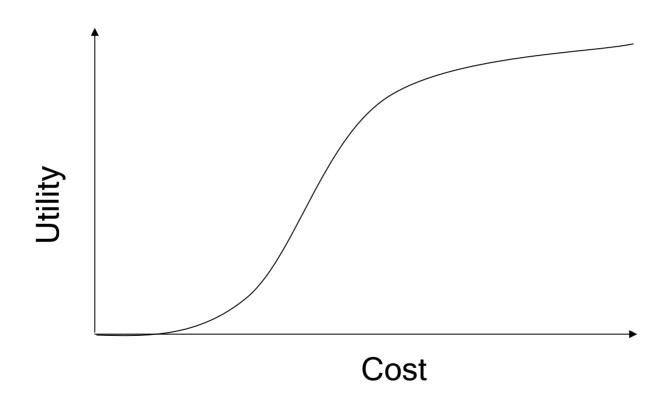
Matrix shows a kind of symmetry about the major diagonal:

• If one entry is 1, the other must be 0. (If A does more than B, then B must have done less than A.

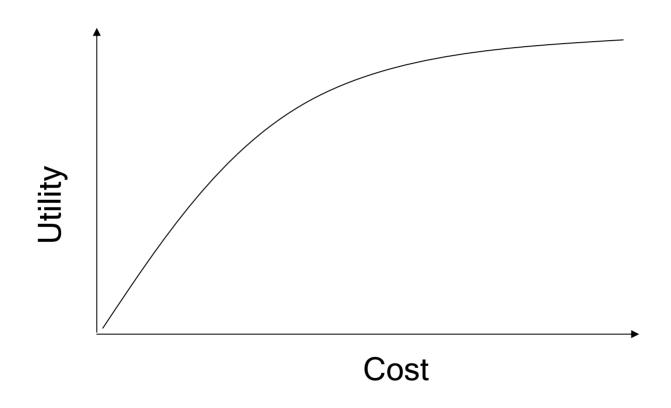
Member Evaluation

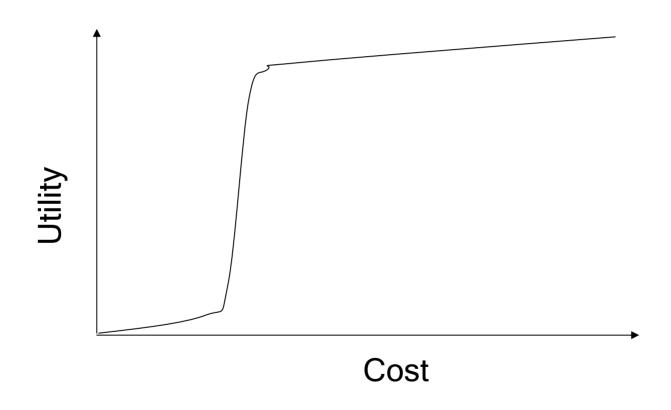
Total along the rows:

YOU	Barney	Fred	Wilma	Jane	$\Sigma =$
Barney		1 (yes)	0 (no)	1	2
Fred	0		0	1	1
Wilma	1	1		1	3
Jane	0	0	0		0


Scoring Process

- Each team member will fill out an evaluation sheet.
 - Privately, without consultation
 - I will total the final scores for the group
- Results in relative scoring for each team member.
 - Minimum: 0 points
 - Maximum: (n-1)(n-2) points, where n = number of members in your group.


Utility Curves and Optimization


Utility Curves and Optimization

Utility Curves and Optimization

Assignments

- Reading
 - Petroski, To Engineer Is Human
 - Chapter 7, Design as Revision
 - Chapter 8, Accidents Waiting to Happen
- Homework
 - Peer review worksheets (due on Feb. 26 as homework <u>do not</u> include with the Project Report or in the Lab Notebook)