

SYST 101: Intro to Systems

Lecture 5

Feb. 4, 2003 C. Wells, SEOR Dept.

Announcements

- You will be required to attend the final project presentations of SYST 490/495 on May 2, at 9:00 location TBD
- Lecture notes at:

www.gmu.edu/departments/seor/syllabi/03B/SYST101/SYST101.htm

Agenda

- Topics for Today
 - Homework discussion
 - Assumptions and analysis

Homework Discussion

- Task consisted of 3 elements
 - Bend a paperclip (to redesign the GEM) and draw the resulting design
 - State the good and bad points of the design
 - State how you might test your claims

Homework Grading

- Indication that you bent a paperclip (if only in a thought experiment) as evidenced by a drawing 70 pts.
 - Would the design really work?
 10 pts.
- Any honest discussion of the merits or weaknesses of the design 10 pts.
- Any plausible discussion of a possible test program
 10 pts.

Not Looking For:

- Not looking for:
 - Marketing brochure
 - Unsubstantiated claims
 - New clasping methods
 - Impossible (implausible) solutions
 - extra features beyond utility to hold papers
- K.I.S.S.
 - Know what the job is
 - Minimum acceptable job, shortest time, least cost

Use The SE Process!

Conceive

- Understand the requirements
 - Read The Question
- Assume a solution
 - Bend a paperclip and see if it works
 - Repeat if necessary

Build

- Write up the project
 - Good and bad points and a possible test procedure

• Use

- Turn it in

Establishing Your Team

- You will need more communications and face time than you expected
- Grading criteria next time:
 - Robot performance
 - Oral presentation
 - Documentation package
 - Peer evaluations

Review

- Systems Engineers are a mile wide and a foot deep
 - Breadth encompasses the way system engineering works across the whole system
 - Depth encompasses some understanding of the elements of a system
- Your courses provide "experience" to use
 - SEOR courses describe the things and how system engineers do them across a system (breadth)
 - Other courses provide understanding of the elements (depth)

Conceiving a Solution

- Assume a solution
 - Based on the requirements
 - Based on knowledge / previous experience
 - Study widely
- Analyze the assumed solution
 - Fix what does not work well enough
- Repeat as necessary

Assumptions in Analysis

- Always starts with simplifying assumptions.
 - Solve the easy problem first, then add complicating factors and issues
- Always keep in mind your assumptions
 - You not really solving the real problem, you're solving something similar (you hope)

Analysis Difficulties

- You can never be sure when you are done
 - Understanding what is important
 - Unanticipated failure mechanisms
 - Unrealistic assumptions
- Mind set when performing analysis
 - Keep an open mind
 - Second set of eyes on the problem

Technical Areas

- Physics
- Chemistry
- Aerodynamics
- Materials
- Electrical / Electronics
- Information
- Dynamics
- etc.

Non-technical Areas

- Customer needs and utility
- Customer perceptions
- Aesthetics
- Personnel issues
- Ergonomics
- Socio-economic issues
- etc.

Assignments

- Reading
 - Petroski, Invention by Design, Chapter 3 "Pencil Points and Analysis"
 - Petroski, To Engineer is Human, Chapter 4 "Engineering as Hypothesis" and Chapter 5 "Success is Foreseeing Failure"
- Homework
 - Lego Mindstorm Tutorial
 - Install and run the software. Proceed through the tutorial. (completed by all team members by Thursday)

Homework (cont.)

- Consider the roads and parking lots of the GMU Fairfax campus as "the GMU Fairfax Traffic System".
 - One external element within the environment of the Traffic System (i.e., can affect and can be affected by) is listed below. List 4 more.
 - -- Local road & street network
 - One external element within the Context of the Traffic System (i.e., can affect the parking system but CANNOT be affected by it) is listed below. List 4 more.
 - -- the weather