IT 888/ECE 753/SYST 684:
DISTRIBUTED ESTIMATION AND MULTISENSOR TRACKING AND FUSION
Spring
2002
� Instructor: Dr. K. C. Chang�������� ������� Class room: SITE II 260
Class
time: Tu. 7:20 � 10:00 PM����������� ����� Office hours: T,R 1:30 ~ 3:00 PM
Office
phone: 993-1639��������������� ����������� Office no.: SITE-II: 315
����� [email protected] ������������������ ����������� http://ite.gmu.edu/~kchang/684syla.htm
Centralized and distributed estimation
theory, hierarchical estimation, tracking and data association, multisensor
multitarget tracking and fusion, distributed tracking in distributed sensor
networks, track-to-track association and fusion, Bayesian networks for
multisensor fusion.
Prerequisites:� ECE 528 or SYST 611
The main objective of the course is to
introduce students to advanced topics in distributed estimation and multisensor
multitarget tracking and fusion.�
Students will study different data association and tracking algorithms
ranging from single maneuvering target to multiple targets under clutter
environments.� Both centralized as well
as the distributed version of the algorithms will be covered.� The distributed framework where data and
tracks are fused from multiple sensor/processors will be studied.� The issues and methodologies of applying
Bayesian networks for data fusion will also be discussed.
�Course Outline
�
1.�������� Course overview.� Review of important concepts in estimation
and multisensor tracking and fusion
2.����������� Centralized
and distributed estimation, Hierarchical estimation theory
3.����������� Tracking
with Probabilistic Data Association filter (PDAF, JPDAF)
4. ����������� Interactive
multiple model algorithms (IMM, IMMPDA)
5.����������� Distributed
IMM and PDA algorithms
6. ����������� Multiple
hypothesis tracker (MHT)
7. ����������� Multisensor
track-to-track association and fusion.
8.� ����������� Distributed tracking in distributed
sensor networks (DSN).
9. ����������� Bayesian
Networks representation and algorithms
10.����������� Bayesnet
for multisensor data fusion
11.
Performance
evaluation multisensor tracking and fusion
There
will be several homework assignments and a project assignment.� There will be a mid term, and a final exam,
both take-home.� They will constitute
25%, 20%, 25%, and 30% of the grade, respectively.��
Proposed Texts
1. Y. Bar-Shalom and X. Li, Multitarget-Multisensor Tracking: Principles
and Techniques, YBS Publishing, 1995.
2. Y. Bar-Shalom and X. Li, Estimation with Applications to Tracking and
Navigation, John Wiley, 2001.
Supplementary Texts
�����������
1. S. S. Blackman, Multiple Target Tracking with Radar Applications, Artech House,
1986.
2. E.
Waltz and J. Llinas, Multisensor Data
Fusion, Artech House, 1990
3. Y. Bar-Shalom, Multitarget multisensor tracking : Applications and Advances,� Vol. I and II, Academic Press, 1990, 1992.
4. Y. Bar-Shalom and Dale Blair, Multitarget multisensor tracking : Applications and Advances,� Vol. III, Artech House, 2000.
Papers
�����������
����������� 1.
J. L. Speyer, "Computation and Transmission Requirements for a
ecentralized Linear-Quadratic-Gaussian Control Problem," IEEE Trans. on Automat. Contr., Vol.
AC-24, April 1979.
����������� 2. C. Y. Chong, �Hierarchical Estimation,� Proc. MIT/ONR Workshop on C3, 1979.
3.
D. B. Reid, "An Algorithm for Tracking Multiple Targets,'' IEEE Trans. on Automat. Contr., Vol.
AC-24, pp. 843 - 854, Dec. 1979.
4.
A. S. Willsky, et. al., "Combining and Updating of Local Estimates and
Regional Maps along Sets of One-Dimensional Tracks," IEEE Trans. on Automat. Contr., Vol. AC-27, August 1982.
5.
B. C. Levy, et. al., "A Scattering Framework for Decentralized Estimation
Problem," Automatica, July 1983.
6.
D. A. Castanon and Teneketzis, "Distributed Estimation Algorithms for
Nonlinear Systems," IEEE Trans. on
Automat. Contr., Vol. AC-30, May 1985.
�
7.
S. Mori, C. Y. Chong, E. Tse, and R. P. Wishner, ``Tracking and Classifying
Multiple Targets without A Priori Identification,''
�IEEE Trans. on Automat. Contr., Vol. AC-31, No. 5, pp. 401 -
409, May 1986.
8.
K. C. Chang, C. Y. Chong, and Y. Bar-Shalom, ``Distributed Estimation in
Distributed Sensor Networks,'' Large-Scale Stochastic Systems Detection,
Estimation, Stability and Control, Chapter 2, Marcel Dekker, 1992.
�
9.
S. Mori, K. C. Chang, and C. Y. Chong, ``Performance Analysis of Optimal Data
Association with Application to Multiple Target Tracking,''
Multitarget-Multisensor Tracking: Applications and Advances, Vol. II, Chapter
7, Artech House, 1992.
�
10.
C. Y. Chong, ``Distributed Architecture for Data Fusion,'' Proc. Fusion�98, Las Vegas, July 1998.
11.
K. C. Chang, Zhi Tian, and R. K. Saha, ``Performance Evaluation of Track Fusion
with Information Filter,'' Proc.
Fusion�98, Las Vegas, July 1998.
12.
David Hall, and Amulya K. Garga, ``Pitfalls in Data Fusion,'' Proc. Fusion�99, Sunnyvale, July 1999.
13.
Oliver E. Drummond, ``On Features and Attributes in Multisensor Multitarget
Tracking,'' Proc. Fusion�99,
Sunnyvale, July 1999.
14.
C.Y. Chong, S. Mori, W.H. Barker, and K.C. Chang, ``Architectures and
Algorithms for Track Association and Fusion,'' Proc. Fusion�99, Sunnyvale, July 1999.
15.
K.C. Chang, �Evaluating Hierarchical Track Fusion with Information Matrix
Filter,� Proc. Fusion�00, Paris,
France, 2000.
16.
X. Rong Li, Y. Zhu and C. Han, �Unified Optimal Linear Estimation Fusion � Part
I: Unified Models and Fusion Results,� Proc.
Fusion�00, Paris, France, 2000.
17.
X. Rong Li and Keshu Zhang, �Optimal Linear Estimation Fusion � Part IV:
Optimality and Efficiency of Distributed Fusion,� Proc. Fusion�01, Montreal, August, 2001.
18.
C. Y. Chong and Shozo Mori, �Convex Combination and Covariance Intersection
Algorithms in Distributed Fusion,� Proc.
Fusion�01, Montreal, August, 2001.