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Thinking like an OR Analyst 

Linear or non-linear 
Dynamic or Static 

Probabilistic or Deterministic 

One time decision or 
sequential decisions 

Objective  • What is the objective of making the 
decision(s) 

Data 

• Availability 
• Type (Static, dynamic (frequency of 

collection), discrete, continuous) 
• Size (Big Data) 

Model 
•  Known, unknown (Learning) 
•  Which OR tool is appropriate  

Solution 
Strategy 

•  Computational complexity 
•  Verification 
•  Validation  
•  Implementation 

Decision making in 
optimization 

Problem  
Definition 
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Static Decision Making 
n  Static (ignore time) 
n  One time investment 
n  Assignment  

n  People to jobs 
n  Jobs to machines (maximize throughput, 

minimize tardiness) 
n  Min-cost Network flow (Oil pipelines) 
n  Travelling Salesman (leave home, travel to 

different cities and return home in the shortest 
distance without revisiting a city) 

n  Min Spanning Tree (Power/water lines) 
n  Set Covering (Installation of fire stations) 
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Dynamic Decision Making 
n  Dynamic (several decisions over time) 
n  Portfolio management (monthly, yearly, or daily (day 

trader on Wall St) 
n  Inventory control (hourly, daily, weekly …) 
n  Dynamic Assignment  

n  Running a shuttle company (by the minute)  
n  Fleet management for airline, trucks, locomotives 

n  Airline seat pricing, Revenue management (by the hour) 
n  Air traffic Control (by the minute) 
n  Refinery process control (temperature control by the 

second) 
n  Maneuvering a combat aircraft or a helicopter or a 

missile (decisions every millisecond)  
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Today’s Talk – A Few Select topics 
n  Modeling and Solution Strategies for Static 

and Dynamic Decision making 
n  Linear Programming example 

n  Will tell you where it breaks down 

n  Integer Programming example 
n  What to do if the model is too hard to obtain 

or its simply not available and there is high 
computational complexity 
n  Metaheuristics (directly search the solution 

space) 
n  Simulation based Optimization 

n  Dynamic Programming example 
n  Computational aspects 6 



Linear Programming 

•  100 workers 
•  80 acres of land 
•  1 acre of land produces 1 ton of either crop 
•  2 workers are needed for every ton of either crop 
•  Your storage permits only a max production of 40 tons  
          of wheat 
•  Selling price of wheat = $3/ton 
•  Selling price of corn = $2/ton 
 
x1 = quantity of wheat to grow in # of tons 
x2 = quantity of corn to grow in # of tons 
 
How many tons of wheat and corn to produce to maximize revenue? 

Subject to  

Solution: Simplex Algorithm, solved using solvers, CPLEX, MLP software. 

Mathematical Model 
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Graphical Representation of LP solution 
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Assumptions for LP to work 

n  1. Proportionality: This is guaranteed if the 
objective and constraints are linear. 

n  2. Additive: Independent decision variables 
n  3. Divisibility: Fractions allowed 
n  4. Certainty: Coefficients in the objective 

function and constraints must be fixed 

Quantity  

Profit 

Quantity  

Profit 
Non-linear 
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What if you had many decision variables 

n  Big Data 
n  Computational burden  

n  Today’s solvers can handle large problems 
n  LP is easy to implement 

n  Industry uses it a lot, often when they should 
not  

n  Provides quick solutions  
n  However, solutions can far from optimal if 

applied to problems under uncertainty in a 
non-linear environment.  

n  So use caution. Use only when appropriate. 
n  Is the real-world linear, fixed, deterministic? 
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Relax Assumption 1 

n  1. Proportionality: if not true 
n  Max Z = 3x1

2 + 2x2
2 

n  Need Non-linear Programming (far more difficult than 
LP) 

n  Solution strategies are very different 
n  Method of steepest ascent, Lagrangian Multipliers, 

Kuhn-Tucker methods 
n  OR 644 - A separate course taught by Dr. Sofer 

Quantity  

Profit 

Quantity  

Profit 
Non-linear 
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Assumption 3: What if the decision 
variables are integers 

n  3. Divisibility: If fractions are not allowed 
n  Yes or no decisions (0,1) binary variables 
n  Assignment problems 
n  Need Integer Programming 
n  OR 642 - A separate course taught by Dr. 

Hoffman 
n  These problems are more difficult to solve 

than LP 
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Integer programming example 

n  Knapsack Problem (ever packed a suitcase?) 
n  Fill a sack with multiple units of items 1,2,& 3 

such that the total weight does not exceed 10 
lb and the benefit of the sack is maximum.  

 Item   benefit  wt 
 1   10   3 
 2   12   4 
 3   5   2 
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Integer programming example 

Item   benefit  wt 
1   10   3 
2   12   4 
3   5   2 
Let x1 be quantity of item 1. Similarly x2 and 
x3. All x1, x2 and x3 are integers ≥ 0 
 
Max 10 x1 + 12 x2 +5 x3 
Subject to 
3 x1 + 4 x2 +2 x3  ≤ 10  
x1,x2,x3 are integers and ≥ 0 

-Not a very easy problem to solve 
(you almost always forget something to  
pack that is important) 
-This toy example- you can do it like 
 solving a puzzle  
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Computational complexity 

n  Now, try packing a UPS/FEDEX truck or 
aircraft with both weight & volume 
constraints and maximize the benefit 
n  How many possible ways can you do this? 
n  Although computers can help to solve, the 

solution is often not optimal.  
n  Computationally complex 

n  So we strive of near-optimal (good enough) 
solutions 
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Computational complexity 

n  Traveling Salesman problem 
n  Visit 20 cities and do not repeat a city and do 

all this by travelling the shortest distance 
overall  

n  Distance between cities are known 

16 



Traveling Salesman Problem  

n  What if you chose the closest city from your 
current city every time? 

n  Only 20 solutions to evaluate (starting once 
from each city). 

n  Will you reach optimality? 
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Perils of Short-term vision 

1 

2 

3 

4 

5 

10 

8 

15 

10 

4 city traveling salesman starting from city 1 
Must travel every city only once and return to 1 

Myopic vision if 
You chose to go from  
City 1 to 2 because  
5 is smaller than 10 
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Computational complexity 

n  Traveling Salesman problem 
n  Visit 20 cities and do not repeat a city and do 

all this by travelling the shortest distance 
overall  

n  Distance between cities are known 
n  Today, there exists no computer to solve this 

“optimally” on Earth  
n  X- - - - - - - - - - - - - - - - - - - - - -X 
n  20X19X18X……..X2X1 = 20! Solutions = 

2x1018 solutions 
n  If a computer can evaluate 100 million 

solutions per second, it will take 771 years!! 
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So we strive of near-optimal (good 
enough) solutions 

 
In  
 

Big data problems 
 

With 
 

Severe computational complexity 



Metaheuristics is one way to solve TSP 
near-optimally 

n  Several techniques 
n  Search the solution space 
n  There are no models like LP, IP, NLP 
n  Start your search by defining one or many feasible 

solutions 
n  Improve your objective of the search by tweaking 

your solutions systematically 
n  Stop search when you have had enough of it 

(computing time reaches your tolerance) 
n  Be happy with the solution that you have at that 

point 
n  You may have gotten the optimal solution but you 

will never know that it is indeed optimal 
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n  Let us introduce dynamic decision over time  
and uncertainty 

  on top of 
 
Big data 
Complex non-linear system  
Computational difficulty 
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Need model-free approaches 

n  Simulation-based Optimization 

System simulator 

Optimizer 

Decisions 

Output 
(Objective function) 

Environment (uncertainty) 

Simple example: Car on cruise control 
A mathematical model that relates all car parameters and the environment  
parameters may not exist 
A more difficult to solve and complex example: Air traffic control 
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Simulation-based Optimization 

n  In more complex problems such as helicopter 
control the Optimizer is an Artificial 
Intelligence (Learning) Agent 

System simulator 

Optimizer 

Decisions 

Output 
(Objective function) 

Environment (uncertainty) 
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How does an AI agent learn? 

n  In a discrete setting you need Dynamic Programming 
(OR674 and OR 774) Join my class!! – term common 
among advanced OR  

n  In a continuous time setting it is called optimal 
control (Differential equations are used) – term 
common among Electrical Engineers 

n  Mathematically the above methods are IDENTICAL 
n  Computer science folks call it machine learning, AI, or 

Reinforcement learning and use it for computer 
games  

Learning happens in two ways: supervised and unsupervised  

25 



Dynamic programming 

What is it? 
 
Operates by finding the shortest path (minimize 
cost) or longest path (maximize reward) of 
decision making problems that are solved over 
time 
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Find the shortest path from A to B 
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Find the shortest path from A to B 

1 

2 

4 

6 

7 3 

6 

3 

6 

7 

8 

2 
1 

8 

A B 

Answer = 7 



Questions 

 
n  How many of you evaluated all possible paths to arrive at the 

answer? 
n  How many of you started by looking at the smallest number 

from A (in this case it is 2) and went on to the next node to find 
the next smallest number 1 to add and then added 7 to get an 
answer of 10 

n  If you did all possible paths then you performed an explicit 
enumeration of all possible paths (you will need 771 years or 
more to solve 20 city TSP) 

or  
n  you tried to follow a myopic (short-sight) policy, which did not 

give the correct answer 
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From a Computer’s stand point 

 
n  For explicit enumeration, to find the shortest 

path 
n  There were 18 additions  
n  And 5 comparisons (between 6 numbers because 

there are 6 paths) 

1 

2 
4 

6 

7 3 

6 

3 

6 

7 

8

2 
1 

8 
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Another example 

A B 

27 paths 
27*3= 81 additions 
26 comparisons 
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Another example 

A B 

Explicit enumeration 
55 paths*5 additions per path=15625 additions 
55 – 1 comparisons  = 3124 

 

Exhaustive 
enumeration 
like the TSP 
problem with 
771 years is 
not an option) 
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Myopic vs DP  thinking - find shortest path from 
A to B 

A 

2 

B 

1 Cij=10 

20 10 

40 

Myopic policy:  V(A)= min (Cij)  
     = min of (10 or 20)   
              leads to solution of 50 from A to 1 to B 

DP policy: V(A) = min (Cij + V(next node)) 
              = min (10 + 40, 20+10)  = 30   
      leads to solution of 30 from A to 2 to B   

Cij= cost on the arc 

Key is to find the values of node 1 and 2 
How? By learning via simulation-based optimization 
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Backward recursion 

V=0 

V=6 

V=7 

V=1 

V=6 

V=7 

V=6 

V=3 

V=8 

V=7 

1 

2 

4 

6 

7 3 

6 

3 

6 

7 

8 

2 
1 

8 

A B 

Calculate Value function V 

V= min(8+6,  
         1+7, 
           3+6) = 8 

14 additions not 18 
5 comparisons as before 
(Again, not a significant saving 
 in computation) 

V= min(8+6,  
         3+7, 
           2+1) = 3 

V= min(4+3,  
         2+8) =7 



Another example 

A B 

27 paths 
27*3= 81 additions 
26 comparisons 

Backward recursion 
24 additions  
13 comparisons 
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Another example 

A B 

Explicit enumeration 
55 paths*5 additions per path=15625 additions 
55 – 1 comparisons  = 3124 

 

With backward recursion 
4*(25)+10=110 additions 
20*4+1 comparisons = 81 
 

 

Wow.. That is a significant saving in computation!!!! 

Exhaustive 
enumeration 
like the TSP 
problem with 
771 years is 
not an option) 
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Backward Recursion  

n  Real world problems cannot be solved 
backwards because time flows forward 

n  So we need to estimate the value of the 
future states 

n  We estimate the value of the future states 
almost accurately by unsupervised learning in 
a simulator which interacts with the 
environment. 

n  We make random decisions initially and learn 
from those and then become greedy 
eventually by making only the best decisions.  
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Welcome to the field of 

Dynamic Programming!! 
for 

Sequential Decision Making (over time) 
based on  

the idea that 
 

We want to move from one good state of the system to another 
 by  

making an near-optimal decision  
in the presence of uncertainty 

 
 

The above is achieved via unsupervised learning that entails only 
 an interaction with the environment in a model-free setting   

It also means that the future state depends only on the current and the decision taken 
in the presence of uncertainly (and not on the past – memory-less property)  
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Simulation-based Optimization 

n  In more complex problems such as helicopter 
control the Optimizer is an Artificial 
Intelligence (Learning) Agent 

System simulator built 
using probability 

distributions from   
real-world data 

Dynamic Programming 
Optimizer 

(learning agent) 

Decisions 

Output 
(Objective function) 

Environment (uncertainty) 
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Formal Definition 

i j 

i 

i Cij 

40 

j 

  Formally,  Backward Recursion 
Vt(i)= max or min [Cij+Vt+1(j)] ,  i<j 

The above equation is modified to include uncertainty 
The theory of Markov decision process also called stochastic dynamic Programming 

Key is to find the values of node j while solving V(node i) 
How? By learning via simulation-based optimization 



Examples of DP in the real world 
n  Problems with uncertainty, big data, computationally 

difficult (not widespread as LP) 
n  MapQuest, Google maps 
n  HVAC control 
n  Helicopter control 
n  Missile control 
n  Schneider National (trucking) 
n  Blood bank Inventory control 
n  Financial Economics  
n  Competitive Games (game theory) 

n  Based on Nash equilibrium – (Movie: Beautiful mind 
acted by Russell Crowe) 

n  Power distribution in the US North East Corridor 
n  Revenue management (Airline seat pricing) 41 



Computational Aspects 

n  LP - software has been developed. It has been widely 
researched 

n  IP and NLP are more difficult to solve than LP 
(software exists). Well researched 

n  DP is not well researched and is a newer field (no 
softwares, have to write the code)  
n  Computationally far difficult than LP, IP, NLP but 

we are getting better with faster computers 
n  However, DP is the only route for near-optimally 

solving some of the toughest DYNAMIC 
optimization problems in the world 

n  Particularly for sequential decision making every few 
seconds in a fast changing and uncertain environment 

n  If you solve it, PATENT IT!! 
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In Summary 
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Optimization 
in Prescriptive 

Analytics 

OR Models 

Computational 
complexity 

Algorithms 
for solving 

BIG Data 
and data 
mining 

Data 
Visualization 
& Statistical 

analysis 

Data storage 

IT 

IT, CS 

STAT 

OR 

OR, CS 

OR 

The presentation is an 
overview (breadth) of select 
optimization methods capable 
of handling Big data, rather 
than the specifics (depth) of 
how to implement these 
methods for Big data Analytics 
 
The talk was to create an 
awareness for the methods 
that are out there but not used 
widely in the real-world 
 
Embracing them could make a 
lot of difference on how 
decisions are done for Big 
data driven complex systems 
operating under uncertainty 



In Summary – Main take away 
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In Big Data decision making Problems (Prescriptive Analytics) 
 
Understand characteristics of the data, linear/non-linear, deterministic or 
probabilistic, static or dynamic 9frequency of collection) 
 
Beware of 
1. Myopic policies 
2. Exhaustive enumeration of all solutions 
3. Computational Complexity 
 
Look for appropriate modeling and solution strategies that can provide 
near-optimal decisions (good-enough) In the long run for the problem at 
hand. 
 
When making a decision sequentially over time, make sure to sum the 
cost/reward of making the decision with the value of the estimated future 
state that the decision will take you to. Then pick a decision that minimizes 
(if cost) or maximizes (if reward) the above sum.  



     
 
 

    Thank You 
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