

 Rajesh Ganesan

Associate Professor
Systems Engineering and Operations Research

George Mason University

Optimization in Prescriptive Analytics

The Big Picture
Operations
 Research

(Math prog)

Static decisions
(One-time
 decision)

Linear
Programming

Integer
Programming

Non-linear
Programming

Mixed Integer
programming

Dynamic decisions
(sequential
decision)

Dynamic
programming

Deterministic
 DP

Finite Horizon
problems

Infinite Horizon
problems

Stochastic
DP

Finite Horizon
problems

Infinite Horizon
problems

Decisions taken
over time as the
system evolves

Large-scale
problems

Approximate

Dynamic
programming

Discrete time

Optimal
control

Continuous
time

ODE
Approach

2

Thinking like an OR Analyst

Linear or non-linear
Dynamic or Static

Probabilistic or Deterministic

One time decision or
sequential decisions

Objective • What is the objective of making the
decision(s)

Data

• Availability
• Type (Static, dynamic (frequency of

collection), discrete, continuous)
• Size (Big Data)

Model
•  Known, unknown (Learning)
•  Which OR tool is appropriate

Solution
Strategy

•  Computational complexity
•  Verification
•  Validation
•  Implementation

Decision making in
optimization

Problem
Definition

3

Static Decision Making
n  Static (ignore time)
n  One time investment
n  Assignment

n  People to jobs
n  Jobs to machines (maximize throughput,

minimize tardiness)
n  Min-cost Network flow (Oil pipelines)
n  Travelling Salesman (leave home, travel to

different cities and return home in the shortest
distance without revisiting a city)

n  Min Spanning Tree (Power/water lines)
n  Set Covering (Installation of fire stations)

4

Dynamic Decision Making
n  Dynamic (several decisions over time)
n  Portfolio management (monthly, yearly, or daily (day

trader on Wall St)
n  Inventory control (hourly, daily, weekly …)
n  Dynamic Assignment

n  Running a shuttle company (by the minute)
n  Fleet management for airline, trucks, locomotives

n  Airline seat pricing, Revenue management (by the hour)
n  Air traffic Control (by the minute)
n  Refinery process control (temperature control by the

second)
n  Maneuvering a combat aircraft or a helicopter or a

missile (decisions every millisecond)
5

Today’s Talk – A Few Select topics
n  Modeling and Solution Strategies for Static

and Dynamic Decision making
n  Linear Programming example

n  Will tell you where it breaks down

n  Integer Programming example
n  What to do if the model is too hard to obtain

or its simply not available and there is high
computational complexity
n  Metaheuristics (directly search the solution

space)
n  Simulation based Optimization

n  Dynamic Programming example
n  Computational aspects 6

Linear Programming

•  100 workers
•  80 acres of land
•  1 acre of land produces 1 ton of either crop
•  2 workers are needed for every ton of either crop
•  Your storage permits only a max production of 40 tons
 of wheat
•  Selling price of wheat = $3/ton
•  Selling price of corn = $2/ton

x1 = quantity of wheat to grow in # of tons
x2 = quantity of corn to grow in # of tons

How many tons of wheat and corn to produce to maximize revenue?

Subject to

Solution: Simplex Algorithm, solved using solvers, CPLEX, MLP software.

Mathematical Model

7

Graphical Representation of LP solution

(20,60)

(40,0)

(0,80)

100

(40,20)

(0,0)

X1+X2≤80

(50,0) (80,0) X1

X2

X1≤40

X1≥0

X2≥0

Feasible
region

Objective function
value

Z= 3*20+2*60=180

8

Assumptions for LP to work

n  1. Proportionality: This is guaranteed if the
objective and constraints are linear.

n  2. Additive: Independent decision variables
n  3. Divisibility: Fractions allowed
n  4. Certainty: Coefficients in the objective

function and constraints must be fixed

Quantity

Profit

Quantity

Profit
Non-linear

9

What if you had many decision variables

n  Big Data
n  Computational burden

n  Today’s solvers can handle large problems
n  LP is easy to implement

n  Industry uses it a lot, often when they should
not

n  Provides quick solutions
n  However, solutions can far from optimal if

applied to problems under uncertainty in a
non-linear environment.

n  So use caution. Use only when appropriate.
n  Is the real-world linear, fixed, deterministic?

10

Relax Assumption 1

n  1. Proportionality: if not true
n  Max Z = 3x1

2 + 2x2
2

n  Need Non-linear Programming (far more difficult than
LP)

n  Solution strategies are very different
n  Method of steepest ascent, Lagrangian Multipliers,

Kuhn-Tucker methods
n  OR 644 - A separate course taught by Dr. Sofer

Quantity

Profit

Quantity

Profit
Non-linear

11

Assumption 3: What if the decision
variables are integers

n  3. Divisibility: If fractions are not allowed
n  Yes or no decisions (0,1) binary variables
n  Assignment problems
n  Need Integer Programming
n  OR 642 - A separate course taught by Dr.

Hoffman
n  These problems are more difficult to solve

than LP

12

Integer programming example

n  Knapsack Problem (ever packed a suitcase?)
n  Fill a sack with multiple units of items 1,2,& 3

such that the total weight does not exceed 10
lb and the benefit of the sack is maximum.

 Item benefit wt
 1 10 3
 2 12 4
 3 5 2

13

Integer programming example

Item benefit wt
1 10 3
2 12 4
3 5 2
Let x1 be quantity of item 1. Similarly x2 and
x3. All x1, x2 and x3 are integers ≥ 0

Max 10 x1 + 12 x2 +5 x3
Subject to
3 x1 + 4 x2 +2 x3 ≤ 10
x1,x2,x3 are integers and ≥ 0

-Not a very easy problem to solve
(you almost always forget something to
pack that is important)
-This toy example- you can do it like
 solving a puzzle

14

Computational complexity

n  Now, try packing a UPS/FEDEX truck or
aircraft with both weight & volume
constraints and maximize the benefit
n  How many possible ways can you do this?
n  Although computers can help to solve, the

solution is often not optimal.
n  Computationally complex

n  So we strive of near-optimal (good enough)
solutions

15

Computational complexity

n  Traveling Salesman problem
n  Visit 20 cities and do not repeat a city and do

all this by travelling the shortest distance
overall

n  Distance between cities are known

16

Traveling Salesman Problem

n  What if you chose the closest city from your
current city every time?

n  Only 20 solutions to evaluate (starting once
from each city).

n  Will you reach optimality?

17

Perils of Short-term vision

1

2

3

4

5

10

8

15

10

4 city traveling salesman starting from city 1
Must travel every city only once and return to 1

Myopic vision if
You chose to go from
City 1 to 2 because
5 is smaller than 10

18

3

1-2-3-4-1 = 33
1-3-2-4-1 = 31

Computational complexity

n  Traveling Salesman problem
n  Visit 20 cities and do not repeat a city and do

all this by travelling the shortest distance
overall

n  Distance between cities are known
n  Today, there exists no computer to solve this

“optimally” on Earth
n  X- -X
n  20X19X18X……..X2X1 = 20! Solutions =

2x1018 solutions
n  If a computer can evaluate 100 million

solutions per second, it will take 771 years!!
19

So we strive of near-optimal (good
enough) solutions

In

Big data problems

With

Severe computational complexity

Metaheuristics is one way to solve TSP
near-optimally

n  Several techniques
n  Search the solution space
n  There are no models like LP, IP, NLP
n  Start your search by defining one or many feasible

solutions
n  Improve your objective of the search by tweaking

your solutions systematically
n  Stop search when you have had enough of it

(computing time reaches your tolerance)
n  Be happy with the solution that you have at that

point
n  You may have gotten the optimal solution but you

will never know that it is indeed optimal
21

n  Let us introduce dynamic decision over time
and uncertainty

 on top of

Big data
Complex non-linear system
Computational difficulty

22

Reaching real-world conditions

Need model-free approaches

n  Simulation-based Optimization

System simulator

Optimizer

Decisions

Output
(Objective function)

Environment (uncertainty)

Simple example: Car on cruise control
A mathematical model that relates all car parameters and the environment
parameters may not exist
A more difficult to solve and complex example: Air traffic control

23

Simulation-based Optimization

n  In more complex problems such as helicopter
control the Optimizer is an Artificial
Intelligence (Learning) Agent

System simulator

Optimizer

Decisions

Output
(Objective function)

Environment (uncertainty)

24

How does an AI agent learn?

n  In a discrete setting you need Dynamic Programming
(OR674 and OR 774) Join my class!! – term common
among advanced OR

n  In a continuous time setting it is called optimal
control (Differential equations are used) – term
common among Electrical Engineers

n  Mathematically the above methods are IDENTICAL
n  Computer science folks call it machine learning, AI, or

Reinforcement learning and use it for computer
games

Learning happens in two ways: supervised and unsupervised

25

Dynamic programming

What is it?

Operates by finding the shortest path (minimize
cost) or longest path (maximize reward) of
decision making problems that are solved over
time

26

Find the shortest path from A to B

1

2

4

6

7 3

6

3

6

7

8

2
1

8

A B

Find the shortest path from A to B

1

2

4

6

7 3

6

3

6

7

8

2
1

8

A B

Answer = 7

Questions

n  How many of you evaluated all possible paths to arrive at the

answer?
n  How many of you started by looking at the smallest number

from A (in this case it is 2) and went on to the next node to find
the next smallest number 1 to add and then added 7 to get an
answer of 10

n  If you did all possible paths then you performed an explicit
enumeration of all possible paths (you will need 771 years or
more to solve 20 city TSP)

or
n  you tried to follow a myopic (short-sight) policy, which did not

give the correct answer

29

From a Computer’s stand point

n  For explicit enumeration, to find the shortest

path
n  There were 18 additions
n  And 5 comparisons (between 6 numbers because

there are 6 paths)

1

2
4

6

7 3

6

3

6

7

8

2
1

8

30

Another example

A B

27 paths
27*3= 81 additions
26 comparisons

31

Another example

A B

Explicit enumeration
55 paths*5 additions per path=15625 additions
55 – 1 comparisons = 3124

Exhaustive
enumeration
like the TSP
problem with
771 years is
not an option)

32

Myopic vs DP thinking - find shortest path from
A to B

A

2

B

1 Cij=10

20 10

40

Myopic policy: V(A)= min (Cij)
 = min of (10 or 20)
 leads to solution of 50 from A to 1 to B

DP policy: V(A) = min (Cij + V(next node))
 = min (10 + 40, 20+10) = 30
 leads to solution of 30 from A to 2 to B

Cij= cost on the arc

Key is to find the values of node 1 and 2
How? By learning via simulation-based optimization

33

Backward recursion

V=0

V=6

V=7

V=1

V=6

V=7

V=6

V=3

V=8

V=7

1

2

4

6

7 3

6

3

6

7

8

2
1

8

A B

Calculate Value function V

V= min(8+6,
 1+7,
 3+6) = 8

14 additions not 18
5 comparisons as before
(Again, not a significant saving
 in computation)

V= min(8+6,
 3+7,
 2+1) = 3

V= min(4+3,
 2+8) =7

Another example

A B

27 paths
27*3= 81 additions
26 comparisons

Backward recursion
24 additions
13 comparisons

35

Another example

A B

Explicit enumeration
55 paths*5 additions per path=15625 additions
55 – 1 comparisons = 3124

With backward recursion
4*(25)+10=110 additions
20*4+1 comparisons = 81

Wow.. That is a significant saving in computation!!!!

Exhaustive
enumeration
like the TSP
problem with
771 years is
not an option)

36

Backward Recursion

n  Real world problems cannot be solved
backwards because time flows forward

n  So we need to estimate the value of the
future states

n  We estimate the value of the future states
almost accurately by unsupervised learning in
a simulator which interacts with the
environment.

n  We make random decisions initially and learn
from those and then become greedy
eventually by making only the best decisions.

37

Welcome to the field of

Dynamic Programming!!
for

Sequential Decision Making (over time)
based on

the idea that

We want to move from one good state of the system to another
 by

making an near-optimal decision
in the presence of uncertainty

The above is achieved via unsupervised learning that entails only
 an interaction with the environment in a model-free setting

It also means that the future state depends only on the current and the decision taken
in the presence of uncertainly (and not on the past – memory-less property)

38

Simulation-based Optimization

n  In more complex problems such as helicopter
control the Optimizer is an Artificial
Intelligence (Learning) Agent

System simulator built
using probability

distributions from
real-world data

Dynamic Programming
Optimizer

(learning agent)

Decisions

Output
(Objective function)

Environment (uncertainty)

39

Formal Definition

i j

i

i Cij

40

j

 Formally, Backward Recursion
Vt(i)= max or min [Cij+Vt+1(j)] , i<j

The above equation is modified to include uncertainty
The theory of Markov decision process also called stochastic dynamic Programming

Key is to find the values of node j while solving V(node i)
How? By learning via simulation-based optimization

Examples of DP in the real world
n  Problems with uncertainty, big data, computationally

difficult (not widespread as LP)
n  MapQuest, Google maps
n  HVAC control
n  Helicopter control
n  Missile control
n  Schneider National (trucking)
n  Blood bank Inventory control
n  Financial Economics
n  Competitive Games (game theory)

n  Based on Nash equilibrium – (Movie: Beautiful mind
acted by Russell Crowe)

n  Power distribution in the US North East Corridor
n  Revenue management (Airline seat pricing) 41

Computational Aspects

n  LP - software has been developed. It has been widely
researched

n  IP and NLP are more difficult to solve than LP
(software exists). Well researched

n  DP is not well researched and is a newer field (no
softwares, have to write the code)
n  Computationally far difficult than LP, IP, NLP but

we are getting better with faster computers
n  However, DP is the only route for near-optimally

solving some of the toughest DYNAMIC
optimization problems in the world

n  Particularly for sequential decision making every few
seconds in a fast changing and uncertain environment

n  If you solve it, PATENT IT!!
42

In Summary

43

Optimization
in Prescriptive

Analytics

OR Models

Computational
complexity

Algorithms
for solving

BIG Data
and data
mining

Data
Visualization
& Statistical

analysis

Data storage

IT

IT, CS

STAT

OR

OR, CS

OR

The presentation is an
overview (breadth) of select
optimization methods capable
of handling Big data, rather
than the specifics (depth) of
how to implement these
methods for Big data Analytics

The talk was to create an
awareness for the methods
that are out there but not used
widely in the real-world

Embracing them could make a
lot of difference on how
decisions are done for Big
data driven complex systems
operating under uncertainty

In Summary – Main take away

44

In Big Data decision making Problems (Prescriptive Analytics)

Understand characteristics of the data, linear/non-linear, deterministic or
probabilistic, static or dynamic 9frequency of collection)

Beware of
1. Myopic policies
2. Exhaustive enumeration of all solutions
3. Computational Complexity

Look for appropriate modeling and solution strategies that can provide
near-optimal decisions (good-enough) In the long run for the problem at
hand.

When making a decision sequentially over time, make sure to sum the
cost/reward of making the decision with the value of the estimated future
state that the decision will take you to. Then pick a decision that minimizes
(if cost) or maximizes (if reward) the above sum.

 Thank You

45

