### Prescriptive Analytics: Introduction

#### INCOSE WMA Tutorial Kathryn Blackmond Laskey

George Mason University Department of Systems Engineering and Operations Research

4 May 2013







- **126 million** The number of blogs on the Internet (as tracked by BlogPulse).
- 27.3 million Number of tweets on Twitter per day (November, 2009)
- 350 million People on Facebook.
- 50% Percentage of Facebook users that log in every day.
- 4 billion Photos hosted by Flickr (October 2009).
- **2.5 billion** Photos uploaded each month to Facebook.
- **12.2 billion** Videos viewed per month on YouTube in the US (November 2009).
- **924 million** Videos viewed per month on Hulu in the US (November 2009).



http://royal.pingdom.com/2010/01/22/internet-2009-in-numbers/



# **A Useful Distinction**

- Big Data
  - Collection, management and processing of large quantities of complex structured and unstructured data
- Data Analytics
  - Extracting value from data by using formal analysis to:
    - Find patterns
    - Understand meaning of patterns
    - Make predictions
    - Recommend decisions



### **Driving Forces**

- Unprecedented data availability
- Intense competition
- Culture of constant
  improvement
- Changing customer demographic
- Expanding customer expectations



## Why Analytics?

- Competitive differentiator
  - Individualized customer experience
  - Faster and better service
  - Cost effective processes
- Increasingly pervasive
  - Do you remember life without your computer? Your cell phone? The web?
  - Soon it will inconceivable to do business without analytics



### **Analytics Value Chain**



### **Analytics Value Chain**



### **Descriptive Analytics**

- Identify patterns in data
- Common categories of analytical methods
  - Data visualization methods
  - Data transformation
  - Outlier detection
  - Data mining methods
  - Clustering
  - Exploratory identification of trends and patterns





### **Predictive Analytics**

- Analyze data to make predictions
  - Identify and formally verify patterns in data
  - Understand cause and effect relationships
  - Extrapolate patterns to future
- Common categories of analytical methods
  - Regression analysis
  - Time series models
  - Machine learning methods



# **Prescriptive Analytics**

- Suggest actions to decision maker based on descriptive and predictive analytics
  - Frame the problem
  - Identify candidate actions
  - Predict consequences of actions
  - Assess value of consequences
  - Suggest highest value actions
- Common categories of analytical methods
  - Optimization
  - Simulation

9



#### **Analytics Supports <b>Better Decisions**

- Example: FedEx
  - Package scans and active sensors in highvalue packages provide data on shipments
  - Events are analyzed in real time and <u>shipments rerouted</u> in case of problems



- Example: Petroleum industry
  - Analytics improves problem diagnosis, <u>improves maintenance and repair policies</u>, reduces cost and prevents catastrophic failures
  - Analytics helped ConocoPhillips predict ice floe movement and <u>extend the drilling season</u> by weeks





#### **Evolution of Decision Support**



### **Decisions and Models**

- A model is a representation of a system that can be used to answer questions about the system
  - "All decisions are based on models... and all models are wrong." – John D. Stearman
  - "All models are wrong but some are useful" George Box
- Models are constructed from:
  - Past data on the system
  - Past data related to the system
  - Judgment of subject matter experts
  - Judgment of experienced model builders



# **Models in Engineering**

- Engineers design a system by:
  - Building a model to represent the system they want to design
  - Manipulating the model
  - Using behavior of the model to
    - Predict behavior of the system
    - Evaluate and compare alternative design options
- Types of representation
  - Physical
  - Mathematical
  - Computer
  - Verbal
- Examples
  - Wind tunnel and model airplane
  - CAD model of a bridge
  - Computer simulation of traffic flows on highway network
  - Linear program model for inventory planning
  - Bayesian spam filter











#### **Human Decision Makers and Models**

- People are good at:
  - Identifying what objectives are important
  - Identifying what features are relevant
  - Identifying relationships
  - Generating options
- People need support to:
  - Bump out of pre-conceived ideas and established conventions
  - Integrate large numbers of factors
  - Combine numerical and statistical information with judgment
  - Perform tedious bookkeeping
  - Coordinate among multiple actors
- Effective models produce <u>understandable rationale</u> for recommendations



# **Cognitive Tools**

(von Winterfeldt and Edwards)

- We would never start a construction project without tools
- We should not make important decisions without effective cognitive tools
- Cognitive tools can assist with:
  - Problem structuring
  - Elicitation of human judgmental inputs
  - Organizing and displaying relevant data
  - Aggregating inputs to produce
    - Predictions of outcomes for options suggested by decision maker
    - Recommendations of options for decision maker to consider
  - Understanding strengths and weaknesses of candidate solutions
  - Selecting a solution
  - Justifying the selected solution
  - Implementing the selected solution
- Prescriptive analytics gives us cognitive tools







# **Decision Support Trends**

- IT is increasingly pervasive
- Computer hardware is increasingly smaller and more powerful
- Systems are increasingly interconnected
- The Web is interwoven into all aspects of life
- Demand for usable, flexible, powerful decision support will continue to grow
- Decision support is increasingly embedded into consumer and business products
- User expectations are exploding



# **Data Analytics at GMU**

- Graduate certificate program starts Fall 2013
  - Broad overview of value chain for Big Data Analytics
  - Framework for methodologies to organize, visualize, analyze, and generate value from data
  - Interdisciplinary
- MS program awaits state approval
- Prescriptive analytics
  - Course in certificate program
  - Track in MS program





### Schedule

- 9:00 Introduction
- 9:30 Modeling Decision Problems
- 10:15 Break
- 10:30 Model-Based Systems Engineering and Prescriptive Simulation
- 11:15 Optimization Methods for Prescriptive Analytics
- 12:15 Conclusion



